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MAPPING PROPERTIES OF AN INTEGRAL OPERATOR

Saurabh Porwal

Abstract. In the present paper, we introduce a general integral operator and
study mapping properties on some subclasses of analytic univalent functions. Rele-
vant connections of the results presented here with various known results are briefly
indicated.

2000 Mathematics Subject Classification: 30C45.

1. Introduction

Let A denote the class of the functions f of the form

f(z) = z +
∞∑

k=2

akz
k, (1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and satisfy the
normalization condition f(0) = f ′(0)− 1 = 0.

Further, we denote by S the subclass of A consisting of functions of the form (1)
which are also univalent in U .

For β > 1 and z ∈ U , let

M(β) =
{

f ∈ A : Re
zf ′(z)
f(z)

< β

}
and

N(β) =
{

f ∈ A : Re{1 +
zf ′′(z)
f ′(z)

} < β

}
.

These classes were extensively studied by Uralegaddi et al. in [15], (see also Owa
and Srivastava [9], Porwal and Dixit [13]).
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Very recently Dixit and Chandra [4] generalizes these classes by introducing a
new subclass Sn

k (β) of analytic functions in the unit disk satisfying the condition

Re
{

Dn+1f(z)
Dnf(z)

}
< β, n ∈ N0, z ∈ U, 1 < β ≤ 4/3, (2)

where Dn stands for the Salagean-derivative introduced by Salagean in [14] and f(z)
of the form

f(z) = z +
∞∑

j=k+1

ajz
j . (3)

It can be easily seen that S0
1(β) ≡ M(β), S1

1(β) ≡ N(β).
Further, we denote by Sn

1 (β) ≡ Sn(β).
Breaz [2] studied the mapping properties of the two integral operators on the

classes M(β) and N(β).
In the present paper, we generalized and unified these results by introducing an

interesting integral operator as follows

Fm,n,α(z) =
∫ z

0

(
Dmf1(t)

t

)α1
(

Dmf2(t)
t

)α2

. . .

(
Dmfn(t)

t

)αn

dt (4)

where fi(z) ∈ A, αi > 0, ∀i ∈ {1, 2, . . . n} and m ∈ N0.
Remark 1. For m = 0, n = 1, α1 = 1, α2 = . . . = αn = 0 and f(z) ∈ A, we

obtain Alexander integral operator introduced in 1915 in [1]

I(z) =
∫ z

0

f(t)
t

dt, z ∈ U.

Remark 2. For m = 0, n = 1, α1 = α, α2 = . . . = αn = 0 and f(z) ∈ A, we
obtain the integral operator

Iα(z) =
∫ z

0

[
f(t)

t

]α

dt, z ∈ U,

studied in [8], (see also ([5], [7], [12]).

Remark 3. For m = 1, n = 1, α1 = 1, α2 = . . . = αn = 0 and f(z) ∈ A, we
obtain the integral operator

I(z) =
∫ z

0
f ′(t)dt

studied by various authors in ([6], [11]).

152



Saurabh Porwal - Mapping Properties of an Integral Operator

Remark 4. For m = 1, n = 1, α1 = α, α2 = . . . = αn = 0 and f(z) ∈ A, we
obtain the integral operator

Iα(z) =
∫ z

0

[
f ′(t)

]α
dt, z ∈ U

studied in [10].

Remark 5. For m = 0, αi > 0, i ∈ {1, 2, ...n}, we obtain the integral operator

In(z) =
∫ z

0

[
f1(t)

t

]α1

. . .

[
fn(t)

t

]αn

dt

studied in ([2], [3]).

Remark 6. For m = 1, αi > 0, ∀i ∈ {1, 2, ...n}, we obtain integral operator

Iα1,α2,...αn(z) =
∫ z

0

[
f ′1(t)

]α1 . . .
[
f ′n(t)

]αn dt

studied in [2].

2. Main Results

We study the condition for the integral operator defined in (4) which map Sm(α1)X
Sm(α2)X ... XSm(αn) into N(µ).

Theorem 1. Let fi ∈ Sm(βi) for each i = 1, 2, ...n with βi > 1,m ∈ N0. Then
Fm,n,α(z) ∈ N(µ) where

µ = 1 +
n∑

i=1

αi(βi − 1) and αi > 0.

Proof. Let

Fm,n,α(z) =
∫ z

0

[
Dmf1(t)

t

]α1

. . .

[
Dmfn(t)

t

]αn

dt.

Differentiating it, we have

F ′
m,n,α(z) =

(
Dmf1(z)

z

)α1

. . .

(
Dmfn(z)

z

)αn

. (5)
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Logarthmic differentiation of (5) yields

F ′′
m,n,α(z)

F ′
m,n,α(z)

= α1

[
(Dmf1(z))′

Dmf1(z)
− 1

z

]
+ . . .

+ αn

[
(Dmfn(z))′

Dmfn(z)
− 1

z

]
or, equivalently

Re
{

1 +
zF ′′

m,n(z)
F ′

m,n(z)

}
=

n∑
i=1

αiRe
{

z(Dmfi(z))′

Dmfi(z)

}
−

n∑
i=1

αi + 1

<

n∑
i=1

αiβi −
n∑

i=1

αi + 1

=
n∑

i=1

αi(βi − 1) + 1.

Because
∑n

i=1 αi(βi − 1) > 0, we obtain Fm,n,α(z) ∈ N(µ), where µ = 1 +∑n
i=1 α1(β1 − 1).

If we put m = 0 in Theorem 1, we obtain the following result obtained by Breaz
in [2].

Corollary 1. Let fi ∈ M(βi) with βi > 1, for each i = 1, 2, ..., n. Then
In(z) ∈ N(µ), where µ = 1 +

∑n
i=1 αi(βi − 1) and αi > 0, (∀i = 1, 2, ...n).

If we put m = 1 in Theorem 1, we obtain the following result obtained by Breaz
in [2].

Corollary 2. Let fi ∈ M(βi), for each i = 1, 2, ..., n with βi > 1. Then
Iα1,...,αn(z) ∈ N(µ) with µ = 1 +

∑n
i=1 αi(βi − 1) and αi > 0, (∀i = 1, 2, ...n).
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