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Abstract. This paper is devoted to the study of the general properties of entire
sequence space of fuzzy numbers by using infinite matrices.
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1. Introduction

The concept of fuzzy sets and fuzzy set operations were first introduced by Zadeh[18]
and subsequently several authors have discussed various aspects of the theory and
applications of fuzzy sets such as fuzzy topological spaces, similarity relations and
fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical programming.

In this paper we introduce and examine the concepts of Orlicz space of entire
sequence of fuzzy numbers generated by infinite matrices.

Let C (Rn) = {A ⊂ Rn : Acompactandconvex} . The space C (Rn) has linear
structure induced by the operations A + B = {a + b : a ∈ A, b ∈ B} and λA =
{λa : a ∈ A} for A,B ∈ C (Rn) and λ ∈ R. The Hausdorff distance between A and
B of C (Rn) is defined as

δ∞ (A,B) = max {supa∈Ainfb∈B ‖a− b‖ , supb∈Binfa∈A ‖a− b‖} .

It is well known that (C (Rn) , δ∞) is a complete metric space.
The fuzzy number is a function X from Rn to [0,1] which is normal, fuzzy convex, up-
per semi-continuous and the closure of {x ∈ Rn : X(x) > 0} is compact. These prop-
erties imply that for each 0 < α ≤ 1, the α−level set [X]α = {x ∈ Rn : X(x) ≥ α} is
a nonempty compact convex subset of Rn, with support Xc = {x ∈ Rn : X(x) > 0} .
Let L (Rn) denote the set of all fuzzy numbers. The linear structure of L (Rn) in-
duces the addition X + Y and scalar multiplication λX, λ ∈ R, in terms of α− level
sets, by |X + Y |α = |X|α + |Y |α , |λX|α = λ |X|α for each 0 ≤ α ≤ 1. Define, for
each 1 ≤ q < ∞,
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dq (X, Y ) =
(∫ 1

0 δ∞ (Xα, Y α)q dα
)1/q

and d∞ = sup0≤α≤1δ∞ (Xα, Y α) ,

where δ∞ is the Hausdorff metric. Clearly d∞ (X, Y ) = limq→∞dq (X, Y ) with
dq ≤ dr, if q ≤ r [11]. Throughout the paper, d will denote dq with 1 ≤ q ≤ ∞.
A complex sequence, whose kth term xk is denoted by {xk} or simply x. Let φ
be the set of all finite sequences. Let `∞, c, c0 be the sequence spaces of bounded,
convergent and null sequences x = (xk) respectively. In respect of `∞, c, c0 we have

‖x‖ =
sup

k |xk| , where x = (xk) ∈ c0 ⊂ c ⊂ `∞. A sequence x = {xk} is said to be
analytic if supk |xk|1/k < ∞. The vector space of all analytic sequences will be de-
noted by Λ. A sequence x is called entire sequence if limk→∞ |xk|1/k = 0. The vector
space of all entire sequences will be denoted by Γ. Given a sequence x = {xk} its
nth section is the sequence x(n) = {x1, x2, ..., xn, 0, 0, ...} , δ(n) = (0, 0, ..., 1, 0, 0, ...) ,
1 in the nth place and zeros elsewhere.

2.Definitions and Preliminaries

Let w denote the set of all fuzzy complex sequences x = (xk)
∞
k=1 . Consider

Γ =
{

x ∈ w : limk→∞

(
|xk|1/k

)
= 0
}

and

Λ =
{

x ∈ w : supk

(
|xk|1/k

)
< ∞

}
.

The space Γ and Λ is a metric space with the metric

d (x, y) = inf
{

supk

(
|xk − yk|1/k

)
≤ 1
}

(1)

for all x = {xk} and y = {yk} in Γ.

We now give the following new definitions which will be needed in the sequel.
Definition 2.1 Let X = (Xk) be a sequence of fuzzy numbers. The fuzzy number
Xn denotes the value of the function at n ∈ N and is called the nth term of the
sequence. We denote w (F ) be the set of all sequences X = (Xk) of fuzzy numbers.
Definition 2.2 Let X = (Xk) be a sequence of fuzzy numbers. Then the set of
all X = (Xk) the entire sequence space of fuzzy numbers converge to zero and is
written as

(
|Xk|1/k

)
→ 0 as k → ∞. It is defined by

[
d
(
|Xk|1/k

)
→ 0ask →∞

]
.

We denote the set of all entire sequence space of fuzzy numbers by Γ (F ) . The Γ (F )
is a metric space with the metric ρ (X, Y ) = supkd (Xk, Yk) = supkd

(
|Xk − Yk|1/k

)
Definition 2.2 Let X = (Xk) be a sequence of fuzzy numbers. Then the set of all
X = (Xk) sequences of fuzzy numbers are said to be analytic sequence if the set{(
|Xk|1/k

)
: k ∈ N

}
of fuzzy numbers are bounded.

By Λ, we shall denote the set of all analytic sequence space of fuzzy numbers.
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Let A = (ank) be an infinite matrix of fuzzy numbers and let (pk) be a bounded
sequence of positive real numbers, then Ak (X) =

∑∞
k=1 ankxk (provided that the

series converge for each k = 1, 2, · · · .) is called the A− transform of X. We write
AX = Ak (X) .
Definition 2.3 Let X = (Xk) be a sequence of fuzzy numbers. Then we define
Γ (F,A, p) =

{
X ∈ w (F ) :

[
d
(
|Ak (X)|1/k

)]pk

→ 0 as k →∞
}

Λ (F,A, p) =
{

X ∈ w (F ) : supk

[
d
(
|Ak (X)|1/k

)]pk

< ∞
}

.

If A = I, the unit matrix, then we get
Γ (F,A, p) = Γ (F, p) =

{
X ∈ w (F ) :

[
d
(
|Xk|1/k

)]pk

→ 0 as k →∞
}

Λ (F,A, p) = Λ (F, p) =
{

X ∈ w (F ) : supk

[
d
(
|Xk|1/k

)]pk

< ∞
}

.

If A is an infinite matrix as above pk = p for all k, then we get
Γ (A, p) = (Γ)A (F ) = {X ∈ w (F ) : AX ∈ Γ (F )}
Λ (A, p) = (Λ)A (F ) = {X ∈ w (F ) : AX ∈ Λ (F )} .
Suppose that pk is a constant for all k, then Γ (F,A, p) = Γ (F,A) . A metric d
on L (R) is said to be translation invariant if d (X + Z, Y + Z) = d (X, Y ) for all
X, Y, Z ∈ L (R) .

In this paper we study the spaces Γ (F ) , Λ (F ) , Γ (F,A, p) and Λ (F,A, p) re-
spectively, by applying the infinite matrix A = (ank) (n, k = 1, 2, 3, · · · ) .

3.Results

Proposition 3.1 If d is a translation invariant metric on L (R) , then
(i)d (X + Y, 0) ≤ d (X, 0) + d (Y, 0) (ii)d (λX, 0) ≤ |λ| d (X, 0) , |λ| > 1. If d is a
translation invariant, we have the following straight forward results.
Proposition 3.2 Let X = (Xk) and Y = (Yk) be a sequence of fuzzy numbers, then
Γ (A, p) is linear set over the set of complex numbers C.
Proof: It is easy. Therefore the proof is omitted.

4.Inclusion Relations

Proposition 4.1 If X = (Xk) be a sequence of fuzzy numbers. Let 0 ≤ pk ≤ qk and
let
{

qk
pk

}
be bounded. Then Γ (A, q) ⊂ Γ (A, p) .

Proof: The proof is clear.
Proposition 4.2 Let X = (Xk) be a sequence of fuzzy numbers.
(a) Let 0 < infpk ≤ pk ≤ 1. Then Γ (A, p) ⊂ Γ (A) ;
(b) Let 1 ≤ pk ≤ suppk < ∞. Then Γ (A) ⊂ Γ (A, p) .
Proof:(a) Let X ∈ Γ (A, p) . Then[

d
(
|Ak (X)|1/k

)]pk

→ 0 as k →∞ (2)
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Since 0 < infpk ≤ pk ≤ 1,[
d
(
|Ak (X)|1/k

)]
≤
[
d
(
|Ak (X)|1/k

)]pk

(3)

From (2) and (3) it follows that X ∈ Γ (A) . Thus Γ (A, p) ⊂ Γ (A) . We have thus
proved (a).
Proof: (b) Let pk ≥ 1 for each k and suppk < ∞. Let X ∈ Γ (A) .[

d
(
|Ak (X)|1/k

)]
→ 0 as k →∞ (4)

Since 1 ≤ pk ≤ suppk < ∞, we have[
d
(
|Ak (X)|1/k

)]pk

≤
[
d
(
|Ak (X)|1/k

)]
. (5)

Hence
[
d
(
|Ak (X)|1/k

)]pk

→ 0 as k → ∞ [by using eq(4)]. Therefore X ∈
Γ (A, p) . This completes the proof.
Proposition 4.3 If X = (Xk) be a sequence of fuzzy numbers. Let 0 < pk ≤ qk < ∞
for each k. Then Γ (A, p) ⊆ Γ (A, q) .
Proof:Let X ∈ Γ (A, p) . Hence[

d
(
|Ak (X)|1/k

)]pk

→ 0 as k →∞. (6)

This implies that
[
d
(
|Ak (X)|1/k

)]
≤ 1 for sufficiently large k. We get[

d
(
|Ak (X)|1/k

)]qk

≤
[
d
(
|Ak (X)|1/k

)]pk

. (7)

⇒
[
d
(
|Ak (X)|1/k

)]qk

→ 0 as k → ∞ by using eq(6). We get X ∈ Γ (A, q) .

Hence Γ (A, p) ⊆ Γ (A, q) . This completes the proof.
Proposition 4.4 If liminfk

(
pk
qk

)
> 0 then Γ (A, q) ⊂ Γ (A, p) .

Proof:Suppose that liminfk

(
pk
qk

)
holds. Let X ∈ Γ (A, q) . Then there is β > 0 such

that pk > β qk for large k such that[
d
(
|Ak (X)|1/k

)]pk

≤
[[

d
(
|Ak (X)|1/k

)]qk
]β

. (8)

Since
[
d
(
|Ak (X)|1/k

)]pk

≤ 1 for each k, X ∈ Γ (A, p) . This completes the proof.
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5.Paranormed spaces

If E is a linear space over the filed C, then a paranorm on E is a function g : E → R
which satisfies the following axioms; for X, Y ∈ E,
(P.1)g (θ) = 0, (P.2)g (X) ≥ 0 for all X ∈ E, (P.3)g (−X) = g (X) for all X ∈ E,
(P.4)g (X + Y ) ≤ g (X) + g (Y ) for all X, Y ∈ E, (P.5)If (λn) is a sequence of
scalars with λn → λ (n →∞) and (Xn) is a sequence of the elements of E with
Xn → X imply λnXn → λX, where λn, λ ∈ C and Xn, X ∈ E. In other words
|λn − λ| → 0, g (Xn −X) → 0 imply g (λnXn − λX) → 0 (n →∞) . A paranormed
space is a linear space E with a paranorm g and is written as (E, g) .
Theorem 5.1 If X = (Xk) be a sequence of fuzzy numbers. Then Γ (A, p) is com-
plete with respect to the topology generated by the paranorm h defined by

h (X) = supk

[
d
(
|Ak (X)|1/k

)]pk

, whered is translation invariant. (9)

Proof: Clearly h (θ) = 0, h (−X) = h (X) . It can also be seen easily that h (X + Y ) ≤
h (X) + h (Y ) for X = (Xk) , Y = (Yk) ∈ Γ (A, p) , since d is a translation in-
variant. Now for any scalar λ, we have |λ|pk < max {1, |λ|} , so that h (λX) <
max {1, |λ|} , h (X) on Γ (A, p) . Hence λ → 0, X → θ implies λX → θ and also
X → θ, λ fixed implies λX → θ. Now let λ → 0, X fixed. For |λ| < 1 we have[

d
(
|Ak (X)|1/k

)]pk

< ε for n > N (ε) .

Also, for 1 ≤ k ≤ N, since
[
d
(
|Ak (X)|1/i

)]pk

< ε, there exists m such that(∑∞
i=m

[
d
(
|λak,iXi|1/i

)]pi
)

< ε. Taking λ small enough then we have(∑∞
i=m

[
d
(
|λak,iXi|1/i

)]pi
)

< 2 ε, for all i. Hence h (λX) → 0 as λ → 0. There-
fore h is a paranorm on Γ (A, p) .
To show the completeness , let

(
X(i)

)
be a Cauchy sequence in Γ (A, p) . Then for a

given ε > 0 there is r ∈ N such that[
d

(∣∣∣Ak

(
X(i) −X(j)

)∣∣∣1/k
)]pk

< εfor all i, j > r. (10)

Since d is a translation invariant, so (10) implies that(∑
s

aks d

(∣∣∣X(i)
k −X

(j)
k

∣∣∣1/k
))

< εfor all i, j > r andeachk. (11)
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Hence d

(∣∣∣X(i)
k −X

(j)
k

∣∣∣1/k
)

< εfor all i, j > r. Therefore
(
X(i)

)
is a Cauchy sequece

in L (R) . Since L (R) is complete, limj→∞Xj
k = Xk, say. Fixing r0 ≥ r and letting

j →∞, we obtain (12) that(∑
s

aks d

(∣∣∣X(i)
k −Xk

∣∣∣1/k
))

< εfor all r0 > r. (12)

(i.e) d

(∑
s aks d

(∣∣∣X(i)
k −Xk

∣∣∣1/k
))

< εfor all r0 > r, since d is a translation

invariant. Hence
[
d
(∣∣Ak

(
X(i) −X

)∣∣1/k
)]pk

< ε. (i.e) X(i) → X in Γ (A, p) . It is
easy to see that X ∈ Γ (A, p) . Hence Γ (A, p) is complete. This completes the proof.
Similarly we can prove the following:
Theorem 5.2 If X = (Xk) be a sequence of fuzzy numbers, then Λ (A, p) is a
complete paranormed space with the paranorm given by (9) if infpk > 0.
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