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is to study the integrability of the distribution and give some results on proper
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1. INTRODUCTION

The notion of Lorentzian a—Sasakian manifolds was introduced by Yildiz and Mu-
rathan [8]. In [4], Matsumoto studied several properties of Lorentzian para contact
structure. In this paper, we show that integrability condition of the distribution in
proper semi-invariant submanifold of Lorentzian a—Sasakian Manifolds. Also we
give some intereting results concerning distributions.

2. PRELIMINARIES

Let M be an (2n 4 1)—dimensional differentiable manifold of differentiability class
C* endowed with a C*°-vector valued linear function ¢, a C* vector field &, 1-form n
and Lorentzian metric g of type (0, 2) such that for each p € M, the tensor g, : T, M x
Tp]\7 — R is a non-degenerate inner product of signature (—,+,+,...,+) where
T pM denotes the tangent vector space of M at p and R is the real number space,
which satisfies

(0.1)
P =T+n®¢ (0.2)
G(¢X,9Y) = g(X,Y) +n(X)n(Y), (0.3)
9(X,§) = n(X), (0.4)
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for all vector fields X,Y tangent to M. Such structure (6,€,m,9) is termed as
Lorentzian para contact [4].
In a Lorentzian para contact structure the following holds:

¢§ =0, n(¢X) =0, (0.5)

A Lorentzian para contact manifold is called Lorentzian a«—Sasakian (La—Sasakian)
manifold if B
(Vx@)(Y) = a(g(X, Y)E +n(Y)X) (0.6)

Also a Lorentzian a—Sasakian manifold M satisfies

Vxé =X, (0.7)
(Vxn)(Y) = ag(X, ¢Y) (0.8)

where V denotes the operator of covarient differentiation with respect to the Lorentzian
metric g and « is constant.
Let us put
P(X,Y) = ag(X,¢Y) (0.9)

then the tensor field ® is symmetric (0, 2)-tensor field. Thus, we have
O(X,Y)=2(Y,X) (0.10)
B(X,Y) = (Vxn)(Y) (0.11)
The submanifold M of the Lorentzian a—Sasakian manifold M is said to be

semi-invariant if it is endowed with the pair of orthogonal distribution (D, D')
satisfying the conditions

(i) TM =D® Dt (),

(ii) The distribution D is invariant under ¢, that is,

¢D, = D,, for each z € M
(iii) The distribution D+ is anti-invariant under ¢,that is,
gzﬁDj - TIML, for each x € M

We sat that M is a proper semi-invariant submanifold if both the distribution
D and D' are non-zero. For any vector bundle H on M [resp., M], we denote by
I'(H) the module of all differentiable section of H neighbourhood co-ordinate on M
[resp., M].
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The projection morphisms of TM to D and D+ are denoted by P and @ respec-

tively. Then we have
X =PX+ QX +n(X)¢ (0.12)

and
¢N = BN +CN (0.13)

where BN and C'N denote the tangential and normal component of ¢ N, respectively.
The equations of Gauss and Weingarten for the immersion of M in M are given

by
VxY =VxY +h(X,Y), (0.14)

VxN = —AxX + V%N, (0.15)

for any X,Y € T(TM) and N € I'(TM+'), where V is the Levi-Civita connection
on M, V= is the linear connection induced by V on the normal bundle TM L his
the second fundamental form of M and Ay is the fundamental tensor of Weingarten
with respect to the normal section N. By using (0.14) and (0.15), we get

g(h(X,Y),N)=g(ANX,Y) (0.16)

for any X,Y € (TM) and N € T(TM™).
A submanifold M is said to be
(i) totally geodesic in M if

h =0 or equivalently Ay =0 (0.17)

for any N € TM*.
(ii) totally umbilical if
MX,Y)=g(X,Y)F (0.18)

where F' is mean curvature vector.
(747) minimal in M if the mean curvature vector F' vanishes [2].

3. BAsic LEMMAS

We define
E(X,Y)=Vx¢PY — Apov X (0.19)

for X, Y € I'(T'M). Then we have the following lemma:
Let M be a semi-invariant submanifold in Lorentzian ov—Sasakian manifold M.

Then we have
P(k(X,Y)) = a(9(X,Y)PE —n(Y)PX)) (0.20)

Q(E(X,Y)) = Bh(X,Y) + a(¢(X,Y)Q¢ —n(Y)QX)) (0.21)
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h(X,pPY) + VxpQY = pQVxY + Ch(X,Y) (0.22)
n(k(X,Y)) =0 (0.23)

forall X, Y e I'(T'M).

Proof. Appliying (0.12), (0.13), (0.14) and (0.15) in (0.6), we obtain (0.20), (0.21), (0.22)
and (0.23) respectively. O

Let M be a totally umbilical semi-invariant submanifold in Lorentzian a—Sasakian
manifold M. Then we have

Vx€=0, h(X,€) =n(X) for any e I(D1) (0.24)
Vy& =Y, h(Y,§) =n(Y) forany €I'(D) (0.25)
Vel =0, h( € =-1 (0.26)

Proof. In consequence of (0.7) and (0.12), we have
OPX + pQX = Vx&+ h(X,§) (0.27)
Thus, (0.24) — (0.26) follows from (0.27) and (0.1). O

Let M be a semi-invariant submanifold in Lorentzian o—Sasakian manifold M.
Then we have
VW € T(DY), for W e T(D4)

and
VeV e'(D), for V e I'(D)
Proof. The proof is trivial. O

Let M be a semi-invariant submanifold in Lorentzian o—Sasakian manifold M.
Then we get

[X,¢] e T(DY), for X € T(DY) (0.28)

and
[Y,¢] € T'(D), for Y € T'(D) (0.29)
Proof. iFrom lemma 3.3, The proof is obvious. O
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4. INTEGRABILITY OF DISTRIBUTION ON A PROPER SEMI-INVARIANT
SUBMANIFOLD IN A LORENTZIAN a—SASAKIAN MANIFOLD

Let M be a proper semi-invariant submanifold in Lorentzian a—Sasakian manifold
M. Then the distribution D= is intagrable.

Proof. Using (0.7), we get

9([X,Y],§) = g(VxY —VyX,§)
9(VxY, &) —g(Vy X, §)
—g(Y,Vx&) + g9(X, Vy§)
= 0

where Vx¢ =0 for all X,Y € T'(D4). O

Let M be a proper semi-invariant submanifold in Lorentzian a—Sasakian mani-
fold M. Then we have
AgxY —Apy X =0 (0.30)

for all X,Y € T'(D1).

Proof. Let X,Y € T'(D1). Then ¢X,¢Y € I'(TM™). By using (0.4), (0.15) and
(0.7) we have

N(ApxY) = —g(Vy¢X,§) = g(¢X, Vy€) = g(¢X, ¢Y) = g(X,Y) (0.31)
Similarly,

N(Agy X) = —g(Vx oY, §) = g(¢Y, Vx§) = g(¢Y, ¢X) = g(Y, X) (0.32)
for all X,Y € T'(D). From (0.31) and (0.32), we obtain (0.30). O

Let M be a totally umbilical proper semi-invariant submanifold in Lorentzian
a—Sasakian manifold M. Then

Vx¢Y = VyoX =n(X)Y —n(Y)X (0.33)

Proof. (From (0.14),, we get
VxoY — Vy¢pX = VxoY — VyoX + h(Y,¢X) — h(X,¢Y). (0.34)

Then using (0.6) in (0.34), (0.33) is obtained. O
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Let M be a totally umbilical proper semi-invariant submanifold in Lorentzian
a—Sasakian manifold M. Then we have

pX =Vxé+ Fg(X,€), €€ TM (0.35)
dX =Vx&, € TM™* (0.36)
¢X = —AcX + Vi€ (0.37)

LB(X,Y) = —4(X, Y)n(F) (0.3%)

Proof. (From (0.7) and (0.14), we get (0.35). Also, using (0.7) and (0.15) we obtain
(0.36) and (0.37). Again, taking scalar product of equation (0.37) with ¥ we get
(0.38). 0

Let M be a totally umbilical proper semi-invariant submanifold in Lorentzian
a—>Sasakian manifold M such that the structure vector field £ £ is tangent to M.
Then if M is totally geodesic if and only if it is minimal.

Proof. Let M be totally geodesic. Using (0.3), (0.5) and (0.35) in (0.18), we get

0="n( &) =9(§,H)F =-F. (0.39)
which proves the assertion of proposition. ]
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