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1.Introduction

A continuous complex-valued function f = u+iv is defined in a simply-connected
complex domain D is said to be harmonic in D if both u and v are real harmonic
in D. In any simply-connected domain we can write

f = h + g , (1.1)

where h and g are analytic in D. We call h the analytic part and g the co-analytic
part of f . A necessary and sufficient condition for f to be locally univalent and
sense-preserving in D is that |h′(z)| > |g′(z)| in D (see [2]).

Denote by SH the class of functions f of the form (1.1) that are harmonic
univalent and sense-preserving in the unit disc U = {z : |z| < 1} for which
f(0) = fz(0) − 1 = 0. Then for f = h + g ∈ SH we may express the analytic
functions h and g as

h(z) = z +
∞∑

k=2

ak zk , g(z) = z +
∞∑

k=1

bk zk , |b1| < 1 . (1.2)

In 1984 Clunie and Shell-Small [2] investigated the class SH as well as its geo-
metric subclasses and obtained some coefficient bounds. Since then, there have been
several related papers on SH and its subclasses.
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For f = g + h given by (1.2), Jahangiri et al. [4] defined the modified Salagean
operator of f as

Dmf(z) = Dmh(z) + (−1)m Dmg(z), (1.3)

where

Dmh(z) = z +
∞∑

k=2

km ak zk and Dmg(z) =
∞∑

k=1

km bk zk .

The differential operator Dm was introduced by Salagean [5].
For 0 ≤ α < 1, 0 ≤ λ ≤ 1,m ∈ N = {1, 2, ...}, n ∈ N0 = N ∪ {0},m > n and

z ∈ U , we let SH(m, n;α;λ) denote the family of harmonic functions f of the form
(1.2) such that

Re

{
Dm f(z)

λ Dmf(z) + (1− λ)Dn f(z)

}
> α , (1.4)

where Dm f is defined by (1.3).
We let the subclass SH(m, n;α;λ) consist of harmonic functions fm = h+ gm in

SH(m,n;α;λ) so that h and gm are of the form

h(z) = z −
∞∑

k=2

ak zk , gm(z) = (−1)m−1
∞∑

k=1

bk zk ; ak , bk ≥ 0 . (1.5)

We note that, by the special choices of m,n, α and λ, we obtain the following
classes studied by various authors:

(i) SH(1, 0, 0; 0) = T ∗0H , the class of sense-preserving, harmonic univalent func-
tions f which are starlike in U , SH(2, 1; 0; 0) = K0

H , the class of sense-preserving,
harmonic univalent functions f which are convex in U , studied by Silverman [6];

(ii) SH(1, 0;α, 0) = =H(α), the class of sense-preserving, harmonic univalent
functions f which are starlike of order α in U , SH(2, 1;α; 0) = KH(α), the class of
sense-preserving, harmonic univalent functions f which are convex of order α in U ,
studied by Jahangiri [3];

(iii) SH(n + 1, n;α; 0) = H(n, α), the class of Salagean-type harmonic univalent
functions studied by Jahangiri et al. [4].

(iv) SH(m,n;α, 0) = SH(m,n;α), is a new class of Salagean-type harmonic
univalent functions, studied by Yaclin [8].

We further, observe that, by the special choices of m,n, α and λ our class
SH(m,n;α;λ) gives rise to the following new subclasses of SH :

(i) SH(1, 0;α;λ) = =H(α, λ)

=

f ∈ SH : Re


zf
′
(z)

f(z)

λ z f ′ (z)
f(z) + (1− λ)

 > α , 0 ≤ α < 1, 0 ≤ λ ≤ 1, z ∈ U

 ,
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(ii) SH (2, 0;α;λ) = KH(α, λ)

=

f ∈ SH : Re


1 + zf

′′
(z)

f ′ (z)

λ(1 + z f
′′

(z)

f ′ (z)
) + (1− λ)

 > α , 0 ≤ α < 1, 0 ≤ λ ≤ 1, z ∈ U

 ,

(iii) SH (n + 1, n;α;λ) = SH(n;α;λ)

=

f ∈ SH : Re


Dn+1f(z)
Dnf(z)

λ Dn+1(z)
Dn(z) + (1− λ)

 > α , 0 ≤ α < 1, 0 ≤ λ ≤ 1, n ∈ N0 , z ∈ U

 .

We let the subclasses =H(α, λ),KH(α, λ) and SH(n;α;λ) consist of harmonic
functions fm = h + gm so that h and gm are of the form (1.5).

For the harmonic functions f of the form (1.2) with b1 = 0, Avic and Zlotkiewicz

[1] showed that if
∞∑

k=2

k2(|ak| + |bk| ) ≤ 1 then f ∈ K0
H , and Silverman [6] proved

that the above coefficient condition is also necessary if f = h + g has negative
coefficients. Later Silverman and Silvia [7] improved the results of [1, 6] to the case
b1 not necessarily zero.

For the harmonic functions fm of the form (1.5) Yalcin [8] showed that fm ∈
SH(m,n;α) if and only if

∞∑
k=1

(km−αkn

1−α ak + km−(−1)m−n α kn

1−α bk) ≤ 2. In this paper

we extend the above results to the classes SH(m,n;α;λ) and SH(m,n;α;λ). We
also obtain coefficient conditions, extreme points, distortion bounds, convolution
conditions and convex combinations for SH(m,n;α;λ).

2.Coefficient characterization

Unless otherwise mentioned, we assume throughout this paper that m ∈ N, n ∈
N0, m > n, 0 ≤ α < 1 and 0 ≤ λ ≤ 1−α

1+α . We begin with a sufficient condition for
functions in SH(m,n;α;λ).
Theorem 1. Let f = h + g be so that h and g given by (1.2). Furthermore, let

∞∑
k=1

{
(1− λα)km − α(1− λ)kn

1− α
|ak|+

(1− λα)km − (−1)m−nα(1− λ)kn

1− α
|bk|

}
≤ 2 ,

(2.1)
where a1 = 1, m ∈ N, n ∈ N0, m > n, 0 ≤ α < 1 and 0 ≤ λ ≤ 1−α

1+α . Then f is
sense-preserving, harmonic univalent in U and f ∈ SH(m,n;α;λ).
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Proof. If z1 6= z2, then∣∣∣∣f(z1)− f(z2)
h(z1)− h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g(z1)− g(z2)
h(z1)− h(z2)

∣∣∣∣
= 1−

∣∣∣∣∣∣∣∣
∞∑

k=1

bk(zk
1 − zk

2 )

(z1 − z2) +
∞∑

k=2

ak (zk
1 − zk

2 )

∣∣∣∣∣∣∣∣

> 1−

∞∑
k=1

k |bk|

1−
∞∑

k=2

k |ak|

≥ 1−

∞∑
k=1

(1−λα)km−(−1)m−nα(1−λ)kn

1−α |bk|

1−
∞∑

k=2

(1−λα)km −α(1−λ)kn

1−α |ak|
≥ 0,

which proves univalence. Note that f is sense-preserving in U . This is because

|h′(z)| ≥ 1−
∞∑

k=2

k |ak| |z|k−1 > 1−
∞∑

k=2

k |ak|

≥ 1−
∞∑

k=2

(1− λα)km − α(1− λ)kn

1− α
|ak|

≥
∞∑

k=1

(1− λα)km − (−1)m−nα(1− λ)kn

1− α
|bk|

>

∞∑
k=1

(1− λα)km − (−1)m−nα(1− λ)kn

1− α
|bk| |z|k−1

≥
∞∑

k=1

k |bk| |z|k−1 ≥ |g′(z)| .

Now we show that f ∈ SH(m,n;α;λ). We only need to show that if (2.1) holds
then the condition (1.4) is satisfied.

Using the fact that Rew > α if and only if |1− α + w| > |1 + α− w|, it suffices
to show that

|Dmf(z) + (1− α)[λ Dmf(z) + (1− λ) Dnf(z)]| −
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|Dmf(z)− (1 + α)[λ Dmf(z) + (1− λ) Dnf(z)]| > 0 . (2.2)

Substituting for Dmf(z) and Dnf(z) in (2.2) yields, by (2.1) and 0 ≤ λ ≤ 1−α
1+α , we

obtain

|(1 + λ(1− α))Dmf(z) + (1− λ)(1− α)Dnf(z)| −
|(1− λ(1 + α))Dmf(z)− (1− λ)(1 + α)Dnf(z)|

=

∣∣∣∣∣(2− α)z +
∞∑

k=2

[(1− α)(1− λ)kn + (1 + λ(1− α))km] ak zk

+(−1)n
∞∑

k=1

[
(1− α)(1− λ)kn + (−1)m−n(1 + λ(1− α))km

]
bk zk

∣∣∣∣∣
−

∣∣∣∣∣α z −
∞∑

k=2

[(1− λ(1 + α))km − (1 + α)(1− λ)kn] ak zk

−(−1)n
∞∑

k=1

[
(−1)m−n(1− λ(1 + α))km − (1 + α)(1− λ)kn

]
bk zk

∣∣∣∣∣
≥ 2(1− α)|z| − 2

∞∑
k=2

[(1− λα)km − α(1− λ)kn] |ak| |z|k

−
∞∑

k=1

∣∣(−1)m−n(1 + (1− α)λ)km + (1− α)(1− λ)kn
∣∣ |bk| |z|k

−
∞∑

k=1

∣∣(−1)m−n(1− λ(1 + α))km − (1 + α)(1− λ)kn
∣∣ |bk| |z|k

=



2(1− α)|z| − 2
∞∑

k=2

[(1− λα)km − α(1− λ)kn] |ak| |z|k−

2
∞∑

k=1

[(1− λα)km + α (1− λ)kn] |bk| |z|k, m− n is odd

2(1− α)|z| − 2
∞∑

k=2

[(1− λα)km − α(1− λ)kn] |ak| |z|k

−2
∞∑

k=1

[(1− λα)km − α (1− λ)kn] |bk| |z|k, m− n is even

= 2(1− α)|z|


1−

∞∑
k=2

(1−λ)km−α(1−λ)kn

1−α |ak| |z|k−1

−
∞∑

k=1

(1−λα)km−(−1)m−nα(1−λ)kn

1−α |bk| |z|k−1

}
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> 2(1− α)


1−

( ∞∑
k=2

(1−λα)km−(−1)m−nα(1−λ)kn

1−α |ak|

+
∞∑

k=1

(1−λα)km−(−1)m−nα(1−λ)kn

1−α |bk|
)}

.

This last expression is non-negative by (2.1).
The harmonic univalent functions

f(z) = z +
∞∑

k=2

1− α

(1− λα)km − α(1− λ)kn
xk zk+

∞∑
k=1

1− α

(1− λα)km − (−1)m−nα(1− λ)kn
yk zk , (2.3)

where m ∈ N, n ∈ N0 , m > n , 0 ≤ α < 1, 0 ≤ λ ≤ 1−α
1+α and

∞∑
k=2

|xk|+
∞∑

k=1

|yk| = 1,

show that the coefficient bound given by (2.1) is sharp. The functions of the form
(2.3) are in SH(m,n;α;λ) because

∞∑
k=1

(
(1− λα)km − α(1− λ)kn

1− α
|ak|+

(1− λα)km − (−1)m−nα(1− λ)kn

1− α
|bk| )

= 1 +
∞∑

k=2

|xk|+
∞∑

k=1

|yk| = 2.

This completes the proof of Theorem 1.
In the following theorem, it is shown that the condition (2.1) is also necessary

for functions fm = h + gm, where h and gm are of the form (1.5).
Theorem 2. Let fm = h + gm be given by (1.5). Then fm ∈ SH(m,n;α;λ) if and
only if

∞∑
k=1

{[(1− λα)km − α(1− λ)kn] ak + [(1− λα)km−

(−1)m−nα(1− λ)kn]bk

}
≤ 2(1− α), (2.4)

where a1 = 1 , m ∈ N , n ∈ N0 , m > n and 0 ≤ α < 1 , 0 ≤ λ ≤ 1−α
1+α .

Proof. Since SH(m,n;α;λ) ⊂ SH(m,n;α;λ), we only need to prove the ”only
if” part of the theorem. To this end, for functions fm of the form (1.5), we notice
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that the condition Re
{

Dmfm(z)
λDmfm(z)+(1−λ)Dnfm(z)

}
> α is equivalent to

Re


(1− α)z −

∞∑
k=2

[(1− αλ)km − α(1− λ)kn]ak zk+

(−1)2m−1
∞∑

k=1
[(1−αλ)km−(−1)m−nα(1−λ)kn]bk zk

z−
∞∑

k=2
(λkm+(1−λ)kn)ak zk +

∞∑
k=1

((−1)m−1λ km+(−1)m+n−1(1−λ)kn)bk zk

 ≥ 0 . (2.5)

The above required condition (2.5) must hold for all values of z in U . Upon choosing
the values of z on the positive real axis where 0 ≤ z = r < 1, we must have

(1− α)−
∞∑

k=2

[(1− αλ)km − α(1− λ)kn]ak rk−1−

∞∑
k=1

[(1− αλ)km − (−1)m−nα(1− λ)kn]bk rk−1

1−
∞∑

k=2

(λkm + (1− λ)kn)ak rk−1 −
∞∑

k=1

(λkm + (−1)m−n(1− λ)kn)bk rk−1

≥ 0 .

(2.6)
If the condition (2.4) does not hold, then the numerator in (2.6) is negative for r
sufficiently close to 1. Hence there exists z0 = r0 in (0, 1) for which the quotient in
(2.6) is negative. This contradicts the required condition for fm ∈ SH(m,n;α;λ)
and so the proof is complete.

3.Extreme points and distortion theorem

Our next theorem is on the extreme points of convex hulls of SH(m,n;α;λ)
denoted by clco SH(m,n;α;λ).
Theorem 3. Let fm be given by (1.5). Then fm ∈ SH(m,n;α;λ) if and only if

fm(z) =
∞∑

k=1

(xk hk(z) + ykgmk
(z)), where h1(z) = z,

hk(z) = z − 1− α

(1− λα)km − α(1− λ)kn
zk (k = 2, 3, ...),

and
gmk

(z) = z + (−1)m−1 1− α

(1− λα)km − (−1)m−nα(1− λ)kn
zk ,

(k = 1, 2, ...), xk ≥ 0, yk ≥ 0 , x1 = 1−
∞∑

k=2

(xk + yk) ≥ 0 .
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In particular, the extreme points of SH(m,n;α;λ) are {hk} and {gmk
}.

Proof. Suppose

fm(z) =
∞∑

k=1

(xk hk(z) + ykgmk
(z))

=
∞∑

k=1

(xk + yk)z −
∞∑

k=2

1− α

(1− λα)km − α(1− λ)kn
xk zk

+(−1)m−1
∞∑

k=1

1− α

(1− λα)km − (−1)m−nα(1− λ)kn
yk zk .

Then
∞∑

k=2

(1− λα)km − α(1− λ)kn

1− α
. (

1− α

(1− λα)km − α(1− λ)kn
xk ) +

∞∑
k=1

(1− λα)km − (−1)m−nα(1− λ)kn

1− α
. (

1− α

(1− λα)km − (−1)m−nα(1− λ)kn
yk )

=
∞∑

k=2

xk +
∞∑

k=1

yk = 1− x1 ≤ 1

and so fm ∈ SH(m,n;α;λ).
Conversely, if fm ∈ clco SH(m,n;α;λ); then

ak ≤
1− α

(1− λα)km − α(1− λ)kn

and
bk ≤

1− α

(1− λα)km − (−1)m−nα(1− λ)kn
.

Set
xk =

(1− λα)km − α(1− λ)kn

1− α
, (k = 2, 3, ....),

and

yk =
(1− λα)km − (−1)m−nα(1− λ)kn

1− α
bk, (k = 1, 2, ....).

Then note that by Theorem 2, 0 ≤ xk ≤ 1, (k = 2, 3, ...), and 0 ≤ yk ≤ 1, (k =

1, 2, ...). We define x1 = 1 −
∞∑

k=2

xk −
∞∑

k=1

yk and note that by Theorem 2, x1 ≥ 0.

Consequently, we obtain fm(z) =
∞∑

k=1

(xk hk(z) + yk gk(z)) as required.
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The following theorem gives the distortion bounds for functions in SH(m,n;α;λ)
which yields a covering result for this class.
Theorem 4. Let fm(z) ∈ SH(m,n;α;λ). Then for |z| = r < 1, we have

|fm(z)| ≤ (1 + b1) r +
1
2n

(
1− α

(1− λα)2m−n − α(1− λ)

− (1− λα)− (−1)m−nα(1− λ)
(1− λα)2m−n − α(1− λ)

b1) r2 (|z| = r < 1),

and
|fm(z)| ≥ (1− b1) r − 1

2n
(

1− α

(1− λα)2m−n − α(1− λ)

− (1− λα)− (−1)m−nα(1− λ)
(1− λα)2m−n − α(1− λ)

b1) r2 (|z| = r < 1).

Proof. We only prove the right-hand inequality. The proof for the left-hand
inequality is similar and will be omitted. Let fm(z) ∈ SH(m, n;α;λ). Taking the
absolute value of fm we have

|fm(z)| ≤ (1 + b1) r +
∞∑

k=2

(ak + bk) rk ≤ (1+b1)r +
∞∑

k=2

(ak + bk) r2

= (1 + b1)r +
1− α

2n[(1− λα)2m−n − α(1− λ)]
.

.

∞∑
k=2

2n[(1− λ)2m−n − α(1− λ)]
1− α

(ak + bk) r2

≤ (1 + b1)r +
(1− α)r2

2n[(1− λα)2m−n − α(1− λ)]
.

.
∞∑

k=2

[
(1− λα)km − α(1− λ)kn

1− α
ak+

(1− λα)km − (−1)m−nα(1− λ)kn

1− α
bk

]
≤ (1 + b1)r +

1
2n

[
1− α

(1− λα)2m−n − α(1− λ)
−

(1− λα)− (−1)m−nα(1− λ)
(1− λα)2m−n − α(1− λ)

b1

]
r2 .

The bounds given in Theorem 4 for functions fm = h+gm of form (1.5) also hold for
functions of the form (1.2) if the coefficient condition (2.1) is satisfied. The upper
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bound given for f ∈ SH(m,n;α;λ) is sharp and the equality occurs for the functions

f(z) = z + b1 z − 1
2n

(
1− α

(1− λα)2m−n − α(1− λ)
−

(1− λα)− (−1)m−nα(1− λ)
(1− λα)2m−n − α(1− λ)

b1) z2,

and

f(z) = z − b1 z − 1
2n

(
1− α

(1− λα)2m−n − α(1− λ)
−

(1− λα)− (−1)m−nα(1− λ)
(1− λα)2m−n − α(1− λ)

b1) z2

for b1 ≤ 1−α
(1−λα)−(−1)m−nα(1−λ)

show that the bounds given in Theorem 4 are sharp.
The following covering result follows from the left hand inequality in Theorem

4.
Corollary 1. Let the function fm defined by (1.5) belong to the class SH(m,n;α;λ).
Then {

w : |w| < (1− λα)2m − 1− [(1− λ)2n − 1]α
(1− λα)2m − α(1− λ)2n

−

(1− λα)(2m − 1)− α(1− λ)(2n − (−1)m−n)
(1− λα)2m − α(1− λ)2n

b1

}
⊂ fm(U).

3.Convolution and convex combination

For our next theorem, we need to define the convolution of two harmonic func-
tions.

For harmonic functions of the form:

fm(z) = z −
∞∑

k=2

ak zk + (−1)m−1
∞∑

k=1

bk zk (ak ≥ 0; bk ≥ 0) (4.1)

and

Fm(z) = z −
∞∑

k=2

Ak zk + (−1)m−1
∞∑

k=1

Bk zk (Ak ≥ 0; Bk ≥ 0) (4.2)

we define the convolution of two harmonic functions fm and Fm as

(fm ∗ Fm)(z) = fm(z) ∗ Fm(z)
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= z −
∞∑

k=2

ak Ak zk + (−1)m−1
∞∑

k=1

bk Bk zk . (4.3)

Using this definition, we show that the class SH(m,n;α;λ) is closed under con-
volution.
Theorem 5. For 0 ≤ β ≤ α < 1, 0 ≤ λ ≤ 1−α

1+α , let fm ∈ SH(m,n;α;λ) and
Fm ∈ SH(m,n;β;λ). Then SH(m,n;α;λ) ⊂ SH(m,n;β, λ).

Proof. Let the function fm(z) defined by (4.1) be in the class SH(m,n;α;λ)
and let the function Fm(z) defined by (4.2) be in the class SH(m,n;β;λ). Then
the convolution fm ∗ Fm is given by (4.3). We wish to show that the coefficients of
fm ∗Fm satisfy the required condition given in Theorem 2. For Fm ∈ SH(m,n;β;λ)
we note that 0 ≤ Ak ≤ 1 and 0 ≤ Bk ≤ 1. Now, for the convolution function fm∗Fm

we obtain
∞∑

k=2

(1− λβ)km − β(1− λ)kn

1− β
ak Ak +

∞∑
k=1

(1− λβ)km − (−1)m−nβ(1− λ)kn

1− β
bk Bk

≤
∞∑

k=2

(1− λβ)km − β(1− λ)kn

1− β
ak +

∞∑
k=1

(1− λβ)km − (−1)m−nβ(1− λ)kn

1− β
bk

≤
∞∑

k=2

(1− λα)km − α(1− λ)kn

1− α
ak +

∞∑
k=1

(1− λα)km − (−1)m−nα(1− λ)kn

1− α
bk

≤ 1 ,

since 0 ≤ β ≤ α < 1 and fm ∈ SH(m, n;α;λ). Therefore fm∗Fm ∈ SH(m,n;α;λ) ⊂
SH(m,n;β;λ).

Now we show that the class SH(m,n;α;λ) is closed under convex combinations
of its members.
Theorem 6. The class SH(m,n;α;λ) is closed under convex combination.

Proof. For i = 1, 2, 3, ..., let fmi ∈ SH(m,n;α;λ), where fmi is given by

fmi(z) = z −
∞∑

k=2

aki
zk + (−1)m−1

∞∑
k=1

bki
zk, (aki

≥ 0 ; bki
≥ 0 ; z ∈ U).

Then by Theorem 2, we have

∞∑
k=1

{
(1− λα)km − α(1− λ)kn

1− α
aki

+
(1− λα)km − (−1)m−nα(1− λ)kn

1− α
bki

}
≤ 2.

(4.4)
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For
∞∑
i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combination of fmi may be written as

∞∑
i=1

ti fmi(z) = z −
∞∑

k=2

(
∞∑
i=1

ti aki
)zk + (−1)m−1

∞∑
k=1

(
∞∑
i=1

ti bki
)zk . (4.5)

Then by (4.4), we have

∞∑
k=1

{
(1− λα)km − α(1− λ)kn

1− α

∞∑
i=1

ti aki
+

(1− λα)km − (−1)m−nα(1− λ)kn

1− α

∞∑
i=1

ti bki

}

=
∞∑
i=1

ti

{ ∞∑
k=1

[
(1− λα)km − α(1− λ)kn

1− α
aki

+

(1− λα)km − (−1)m−nα(1− λ)kn

1− α
bki

]}
≤ 2

∞∑
i=1

ti = 2 .

This is the condition required by (2.4) and so
∞∑
i=1

ti fmi(z) ∈ SH(m, n;α;λ).

Theorem 7. If fm ∈ SH(m,n;α;λ) then fm is convex in the disc

|z| ≤ min
k

 (1− α)(1− b1)

k
[
1− α− ( (1−λα)−(−1)m−nα(1−λ)

1−α ) b1

]


1
k−1

, k = 2, 3, ... .

Proof. Let fm ∈ SH(m,n;α;λ), and let 0 < r < 1, be fixed. Then r−1fm(r z) ∈
SH(m,n;α;λ) and we have

∞∑
k=1

k2(ak + bk)rk−1 =
∞∑

k=2

k(ak + bk)(k rk−1)

≤
∞∑

k=2

(
(1− λα)km − α(1− λ)kn

1− α
ak +

(1− λα)km − (−1)m−nα(1− λ)kn

1− α
bk)k rk−1

≤ 1− b1
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provided that

k rk−1 ≤ 1− b1

1− ( (1−λα)km−(−1)m−nα(1−λ)kn

1−α ) b1

which is true if

k ≤ min
k

 (1− α)(1− b1)

k
[
1− α− ( (1−λα)−(−1)m−nα(1−λ)

1−α ) b1

]


1
k−1

, k = 2, 3, ... .

This complete the proof of Theorem 7.
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