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ABSTRACT. In this paper, we define and investigate a subclass of Salagean-type
harmonic univalent functions. We obtain coefficient conditions, extreme points,
distortion bounds, convex combination and radius of convexity for the above class
of harmonic univalent functions.
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1.INTRODUCTION

A continuous complex-valued function f = u-+iv is defined in a simply-connected
complex domain D is said to be harmonic in D if both u and v are real harmonic
in D. In any simply-connected domain we can write

f=h+7, (1.1)

where h and g are analytic in D. We call h the analytic part and g the co-analytic
part of f. A mnecessary and sufficient condition for f to be locally univalent and
sense-preserving in D is that |k’ (z)| > |¢ ()| in D (see [2]).

Denote by Sy the class of functions f of the form (1.1) that are harmonic
univalent and sense-preserving in the unit disc U = {z : |z| < 1} for which
f(0) = f.(0) =1 = 0. Then for f = h+ g € Sy we may express the analytic
functions h and g as

h(z):z—i—Zakzk,g(z):z—l—Zbkzk,]b1\<1. (1.2)
k=2 k=1

In 1984 Clunie and Shell-Small [2] investigated the class Sy as well as its geo-
metric subclasses and obtained some coefficient bounds. Since then, there have been
several related papers on Sy and its subclasses.
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For f = g+ h given by (1.2), Jahangiri et al. [4] defined the modified Salagean
operator of f as

D™f(z) = D™h(z) + (=1)" D™g(2), (1.3)
where - -
D™h(z) =z + Z E™ay, 2F and D™g(z) = Z k™ by, 25
k=2 k=1
The differential operator D™ was introduced by Salagean [5].
For0<a<1,0<A<1meN={1,2,..},n e Ny = NU{0},m > n and
z € U, we let Sg(m,n;a;\) denote the family of harmonic functions f of the form
(1.2) such that
D™ f(2)
R
{somrra o) o
where D™ f is defined by (1.3).

_ We let the subclass Sy (m,n;a; \) consist of harmonic functions f,, = h+73,, in
S (m,n;a;A) so that h and gy, are of the form

(1.4)

h(z) =2z — Zak 2 gm(2) = (1)1 Zbk 2K ap, by >0 (1.5)
k=2 k=1

We note that, by the special choices of m,n,a and A, we obtain the following
classes studied by various authors:

(i) Su(1,0,0;0) = T}, the class of sense-preserving, harmonic univalent func-
tions f which are starlike in U, Sg(2,1;0;0) = K9, the class of sense-preserving,
harmonic univalent functions f which are convex in U, studied by Silverman [6];

(i) Sg(1,0;c,0) = Spy(a), the class of sense-preserving, harmonic univalent
functions f which are starlike of order a in U, Sy (2,1;a;0) = Ky (a), the class of
sense-preserving, harmonic univalent functions f which are convex of order « in U,
studied by Jahangiri [3];

(iii) Sg(n + 1,n;;0) = H(n, ), the class of Salagean-type harmonic univalent
functions studied by Jahangiri et al. [4].

(iv) Sg(m,n;a,0) = Sy(m,n;a), is a new class of Salagean-type harmonic
univalent functions, studied by Yaclin [8].

We further, observe that, by the special choices of m,n,a and A our class
Su(m,n;a; \) gives rise to the following new subclasses of Sp:

(i) Su(1,0;50) = S (a, )

=< fe€Sy: Re 7(z) >a,0<a<1,0<A<L1, z€eU,,
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(i) i (2,055 \) = Kpr(a, \)

—{ feSy:Re (e >a,0<a<1,0<A\<1, zeU Y,
A1+ f,(i)))+(1—x)

(iii) Sy (n+1,n;a;X) = Sp(n; a5 \)

Dl f(z)

=< feSy: Re an() >a,0<a<,0< A<, neNy,zeU

n+1
DD" (2) (1 >\)

We let the subclasses Sg(a, \), Kg(a, \) and Sy (n;a;\) consist of harmonic
functions f,, = h 4+ 7,, so that h and g,, are of the form (1.5).
For the harmonic functions f of the form (1.2) with b; = 0, Avic and Zlotkiewicz

[1] showed that if Z k*(|lax| + |bk]) < 1 then f € K%, and Silverman [6] proved

that the above coefﬁment condition is also necessary if f = h + g has negative
coefficients. Later Silverman and Silvia [7] improved the results of [1,6] to the case
b1 not necessarily zero.

For the harmonic functions f,, of the form (1.5) Yalcin [8] showed that f,, €

_ 0 Em L km ( l)m—n akm
s . o (-
Su(m,n;«) if and only if kzl( T ay, + T

br) < 2. In this paper

we extend the above results to the classes Sy(m,n;a; ) and Sy (m,n;a;\). We
also obtain coefficient conditions, extreme points, distortion bounds, convolution
conditions and convex combinations for Sg(m,n;a; \).

2.COEFFICIENT CHARACTERIZATION

Unless otherwise mentioned, we assume throughout this paper that m € N, n €
No, m>n, 0<a<land 0 <A< % We begin with a sufficient condition for
functions in Sg(m,n; a; ).

Theorem 1. Let f = h+g be so that h and g given by (1.2). Furthermore, let

> { (1- )\oz)k’:_—s(l SR A da)k (1—_1)02””04(1 — k" |bk|} <9

k=1
(2.1)

Wherea1zl,mGN,nENo,m>n,O§a<landOg)\g};—g. Then f is
sense-preserving, harmonic univalent in U and f € Sy (m,n;a; A).
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Proof. If z1 # 2z, then

f fz)| o |9(z) —9(=)
h(z2)| — h(z1) — h(z2)
> bzt — 25)
g k=1
(21— 22) + 3 ap (2F — 25)
k=2
> kb
> 1- k=L
1= > k|ag|
f=2
i (I—Aa)km—(;l)m_"a(l—k)k” I
—a
Z 1 - h=1 %) Z 07
. Z (1-Xa)k 1_—@&(1—)\)19 |Gk|

which proves univalence. Note that f is sense-preserving in U. This is because

B (2)] > 1—Zk Jar| [2F7 > 1=k fax]
= k=2

oo

(1 -k a(l — X )k™
i e
k=2
2 (1= Xa)k™ — (=1 "a(l — Nk
>
5> i

i
I

(1= Aa)k™ — (—1)™"a(l — A)k"

b k—1
1o [ANE

Nk

B
Il
—

> klbg] [21*1 > g (2)] -

Mg

i

1

Now we show that f € Sg(m,n;a;\). We only need to show that if (2.1) holds
then the condition (1.4) is satisfied.

Using the fact that Rew > « if and only if |1 — a+ w| > |1 + a — w|, it suffices
to show that

(D™ f(2) + (1 = a)]AD™f(2) + (1 = A) D" f(2)]| -
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(D™ f(2) = (1+a)AD™f(z) + (1 = A) D"f(2)]| > 0 .

Substituting for D™ f(z) and D" f(z) in (2.2) yields, by (2.1) and 0 < \ < 1=
obtain

_l’_
e —~

(2) + (1= XA — ) D" f(2)| =
(2) = (1= XA+ ) D" f(2)|

(2—a)z+ i [(1—a)(1 =Nk + (14 A1 - a))k™] ay 2"
k=2

HED™Y (L= a)(1 = NE" 4 (=)™ (14 A(L = a))k™] by 2

—(=1)" i (=)™ (1 = A1+ a))E™ — (1 + a)(1 — N)E"] by 2F

k=1
> 21— a)lzl =23 [(1 =A™ — a(l = Nk"] ay] [2]*
k=2

o0

— Z (=)™ (1 + (1 — @) NE™ + (1 — a)(1 — NE"| |bx] |2]*

o

_Z} )L = ML+ @)k = (14 @) (1 = ME"| b [2]*

2(1 —a)lz] — 2k§2 [(1 = X)k™ — a1 — NE"] |ag| |2F—

2 57 [(1 = Aa)k™ + a (1 — N)E™] |be| |2]F, m—n is odd

2(1 - a)lz] 222 (1= Aa)k™ — a(1 = \)k"] |ag] |2]*

—2 5 [(1 = Aa)k™ — a (1 — NE™] |be| |2|*, m-—n is even
\ k:l
e s
=2(1-a)lz| o
D S O Vi ES S ‘Z|k1}
k=1 “
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(1-Aa)k™—(—1)™ "a(1-A)k™
< a) (1_)a a(1-X) ||
>2(1—a) o

E (1Aa)km ()™ a1 |b|>}

This last expression is non-negative by (2.1).
The harmonic univalent functions

1 -« k
_Z+Z (= ra)k™ —a(l =k F5T

> 11—«
R 2.
kzl 1 ha)k™ — (—1)m=ra(l — Nke P50 (2:3)

whereme N,ne Ng,m>n,0< a <1, 0<A<1‘aand2 |$k|‘|‘z lyel = 1,

show that the coefficient bound given by (2.1) is sharp. The functlons of the form
(2.3) are in Sy (m,n;a; \) because
(1= Xa)E™ — a1 — Nk (1 =A™ — (=)™ (1 — A)E™
Z( T lak| +

-« l-«

bk )

k=1

o0 o0
=14+ |kl + ) uel =2.
o =1

This completes the proof of Theorem 1.
In the following theorem, it is shown that the condition (2.1) is also necessary
for functions f,,, = h +g,,, where h and g,, are of the form (1.5).
Theorem 2. Let f,, = h+3,, be given by (1.5). Then fn, € Sg(m,n;o;N) if and
only if
o
> Al = A)E™ — a(l = NE" ag, + (1 — Aa)k™—
k=1
(=)™ a1l = k" bk} < 2(1 — ), (2.4)
wherea; =1, me N, neNyg,m>n and 0<a<1,0<A<L ha
Proof. Since Sg(m,n;a;\) C Sg(m,n;a; ), we only need to prove the ”only
if” part of the theorem. To this end, for functions f,, of the form (1.5), we notice
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that the condition Re { ADmfm(gi{fq—(igD”fm(z)} > « is equivalent to
(1—a)z— S [(1—aNE™ —a(l — N)k"]ay, 284+
k=2
Re (—1)2m—1 i'f [(1=aA) k™ —(=1)m =" (1= A)k"]bj, 2 >0. (2.5)

3 k(1 )\)k”)akzk+2(( 1)m=1A km(—1)m+n=1(1—\)kn)by, 2%
k=2 =1

The above required condition (2.5) must hold for all values of z in U. Upon choosing
the values of z on the positive real axis where 0 < z = r < 1, we must have

(1-a) i 1 —aMk a(l—)\)k"]akr’“ﬂ_
k=2
S = aNK™ — (—1) (1 — Ak by !
— k=1 2 N
= 2 OW 4 (L= AR =t 5 (R (1) (L= Al ]
k=2 k=1
(2.6)

If the condition (2.4) does not hold, then the numerator in (2.6) is negative for r
sufficiently close to 1. Hence there exists zg = 79 in (0, 1) for which the quotient in

(2.6) is negative. This contradicts the required condition for f,, € Sg(m,n;a;\)
and so the proof is complete.

3.EXTREME POINTS AND DISTORTION THEOREM

Our next theorem is on the extreme points of convex hulls of Sg(m,n;a;\)
denoted by clco Sg(m,n;a;\). B
Theorem 3. Let f,, be given by (1.5). Then fn,, € Sg(m,n;a; ) if and only if

fm(z) = i (xk hie(2) + Ykgm, (2)), where hi(z) = z,

k=1
ha(z) = = — 1 —a k=23,
(1 = Aa)k™ — a1l — N\)k»
and
gme(2) =2+ (=)™ (1= Aa)k™ — (1—_1)am—na(1 —A\)kn 7,
(k=1,2,..),2, >0, yp > 0,21 =1 —i(a:k—i—yk) >0.
k=2
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In particular, the extreme points of Sy (m,n;a;\) are {hg} and {gm, }-
Proof. Suppose

fm(2) = Y (@nhi(2) + yrgim (2))

k=1
= i (zk+ y i Lo zy 2
kE )2 (1= Xa)k™ —a(l = A)k* "
k=1 k:2
l—«
m 1 =k
Zl—)\a “(C)mra(l — Ak R E
Then
(1= A)k™ — a(l — NE™ Y
kZ:Q -« T —ag e )T
i (1= Xa)k™ — (=1)™ a1 — A\)E" ( Y
= 1—a YA - aa)km — (—1)mra(l — Ak Uk

oo oo
= Zﬂck + Zyk=1—$1§1
k=2 k=1

and so fi, € Sy(m,n;q; )\).7
Conversely, if f,, € clco Sg(m,n;a; \); then

< 11—«
=1 ha)km — a1 — NE"

and

b < 11—« .
(1= Aa)k™ — (=)™ a(l — Ak
Set m n
Tk = (1_)\a)k1 :5(1_)\)k ) (k:2737"")’
and m m—n n
s — (1 — Xa)k™ — (1_1)0[ a(l— Mk br, (E=1,2,....).

Then note that by Theorem 2, 0 < xp < 1, (k = 2,3,...), and 0 < gy < 1, (k =
[e.°] o0
1,2,...). We define 21 =1 — ) zr — > yx and note that by Theorem 2, z; > 0.

k=2 k=1
o0
Consequently, we obtain f,,(z) = Y (zx hx(2) + yk gx(2)) as required.
k=1
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The following theorem gives the distortion bounds for functions in Sy (m, n; a; \)
which yields a covering result for this class.
Theorem 4. Let fn,(2) € Sy(m,n;a;\). Then for |z| =r < 1, we have

1 11—«
< (b0 50 (S ayamn ot — )

(I—-Aa) = (=1)" "ol = A)
T a2 —a(l— ) b)r? (2] =r < 1),

and

)= (1= )7 = o (g a3

(1 =2da) = (=1)™ "a(l—N\) 9
_ b = 1).
A —aapzmn—ap—n W7 (El=r<
Proof. We only prove the right-hand inequality. The proof for the left-hand
inequality is similar and will be omitted. Let f,,(2) € Sg(m,n;a;\). Taking the
absolute value of f,,, we have

)] € (b)r+ S ot b it < (b (ot b
k:2 l-«a

27[(1 = Aa)2m" — (1 = N)]

‘ i 27[(1 — A)2m " — a1 — N)]

l—«o

= (I+byr+

(ay + be) r°
k=2

(1—a)r?
[(1—Xa)2m— — (1l —N)]

IN

(1 + bl)T’ + on

M1 = Aa)k™ — a1 — N)k™

'Z[( )l—a( ) -

k=2

(1= A)k™ — (=1)™ "a(l — N\)E™
e bk]

1 11—«
< (L4b)r+— -
s (4b)r+o [(1—)\a)2m”—a(1—)\)

(1—=2da) = (=)™ "a(l—N) b ] 2
(1 —Xa)2m" —a(l —)\) '

The bounds given in Theorem 4 for functions f,,, = h+7,, of form (1.5) also hold for
functions of the form (1.2) if the coefficient condition (2.1) is satisfied. The upper
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bound given for f € Sy (m,n;a; \) is sharp and the equality occurs for the functions

7 1 11—«
fz) = 2thz - o ((l_mﬂmfn_a(l_A) B
(=)= ()" "a(l=N),
I—Aa)2mn—a(l—A) 7
and
1 11—«

flz) = 2=tz — o ((1 “X)2mn —a(l-N)
(1—Aa) — (=)™ "a(l - )
(1—2a)2m —a(l -\

bl) 22

for by < (17)\(1)7(711_)?”_”01(17)\) show that the bounds given in Theorem 4 are sharp.

The following covering result follows from the left hand inequality in Theorem
4

Corollary 1. Let the function f,, defined by (1.5) belong to the class Sg(m,n;a; \).
fhen (1= A)2™ — 1 — [(1— \)2" — 1]
{w L s v Ty T v T

(1= Xa)(2™ — 1) — a1 — A)(2" — (=1)™—™)
(1= Xa)2m — a(l — \)2" bl} < fm(U):

3.CONVOLUTION AND CONVEX COMBINATION

For our next theorem, we need to define the convolution of two harmonic func-
tions.
For harmonic functions of the form:

f(z) =2=> ap 2"+ (1)) b 2 (ax = 0; b, > 0) (4.1)
k=2 k=1

and

oo (o]
Fn(z) =2—=Y A"+ (-1)""'> " By 2" (A >0; B, > 0) (4.2)
k=2 k=1
we define the convolution of two harmonic functions f,, and F,, as

(fm * Fm)(z) = fm(z) * Fm(z)
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:z—ZakAkz—i— lekakZ . (4.3)

Using this definition, we show that the class Sy (m,n;a; ) is closed under con-
volution.

Theorem 5. For 0 < 8 < a < 1,0 < A< i—& let fr € Sp(m,n;a; ) and
F,, € Sg(m,n; B3;\). Then Sg(m,n;a; ) C Sg(m,n; 3, ).

Proof. Let the function f,,(2) defined by (4.1) be in the class Sy (m,n;a;\)
and let the function F,(z) defined by (4.2) be in the class Sg(m,n;3;A). Then
the convolution f,, * F,,, is given by (4.3). We wish to show that the coefficients of
fm * Fy, satisfy the required condition given in Theorem 2. For F, € Sy (m,n; 3;\)
we note that 0 < A < 1and 0 < By < 1. Now, for the convolution function f, * Fy,
we obtain

> - Aﬂ)k?:g(l — AR ar Ap+ ) L AT (1__1);_%(1 — A)knbk By,
k=2 k=1
— (1= AB)k™ — B(1 — o~ (L= AB)E™ — (1) "B(1 = \)k"
(1= Aa)k™ —a(l - (1= A)k™ — (=1)™ "a(l — N)E™
- kZ:2 -« ak + Z 11—« %
< 1

since0 < B < a < 1land f, € Sg(m,n;a; ). Therefore f,,*Fy, € Sg(m,n;a; \) C
Su(m,n; B; \).

Now we show that the class Sy (m,n;a;\) is closed under convex combinations
of its members.
Theorem 6. The class Sy (m,n;a;\) is closed under convex combination.

Proof. For i =1,2,3, ..., let fm, € Sg(m,n;a; ), where f,,, is given by

fm; (2 —Z—Zakz+ leka (ag, > 05 b, >0; z€U).

Then by Theorem 2, we have

i { 1 _ )\Od . Ct(l - A)kn N (1 o )\Ot)km _ (_1)m7n04(1 — )\)k‘n bkz} <o

-« Ak 11—«

k=1 Z
(4.4)
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o0
For > t; =1,0 <t; <1, the convex combination of f,,, may be written as
i=1

[e.e]

Ztifmi = Z Ztla;ﬁ K (—1)m IZ Zt by, )Z" . (4.5)
=1 =2 i=

k=1 i=1

Then by (4.4), we have

(1 —A@)k™ — (—1)™ (1 — \)k" i - }

11—«

(I = Aa)k™ —a(l — Nk
:th{Z[ )l—a( S

k=1

(1 - Aa)k™ — (1—_1):—%(1 — k" bki] }

(o)
< 2 =2,
=1

S —

This is the condition required by (2.4) and so > t; fm,(2) € Su(m,n;a; \).
i=1

Theorem 7. If f,, € Sg(m,n;a; ) then fn, is convex in the disc

1
k—1

1-— 1-—
|z] < min ((I_Aa))f(_l)gl)n ) k=23, ...
N A e L]

Proof. Let fn, € Sp(m,n;a; ), and let 0 < r < 1, be fixed. Then 7~ f,,(rz) €
Sy (m,n;a; ) and we have

Zk‘gak—i-bk Zkak+bk )

o

- Z((km)k S UL e ) el G A B L
l-«a -«
k=2
< 1-b
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provided that

_ 1—b
1— ((I—Aoc)k —(;i)a a(l-N)k ) by
which is true if
=
1
1-— 1-—
k < min ( AO‘)( b) A k=23,
k| g [1 Ca— ((1* a)*(*li)a a(l— )) by
This complete the proof of Theorem 7.
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