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Abstract. In this paper, we have characterized soluble groups by using the number of
their non T-subgroups and also classified finite groups having exactly five non T-subgroups.
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1. Introduction

A group is said to be a T-group if every subnormal subgroup is normal. Thus
the class of T-groups is just the class of all groups in which normality is a transitive
relation. Finite groups whose all proper subgroups are T-groups have been studied
in 1969 by Derek J. S. Robinson [3]. In that paper he proved that if all subgroups
of a finite group are T-groups then G is soluble. Our aim is to study finite groups
having non T-subgroups. In this paper we have characterized soluble groups by
using the number of their non T-subgroups and also classified finite groups having
exactly five non T-subgroups. We managed to prove that if all all subgroups of
a finite group are T-groups except at most 4 subgroups then the group would be
soluble. We also see that finite groups having more than 4 non T-subgroups are not
soluble in general. Throughout this paper, simple group means non abelian simple
group.

2. Main Results

We begin with the proof of the following lemma.
Lemma 2.1. If G is a finite group all of whose proper subgroups are T-group

except one, then G is soluble.
Proof. Let H be a non T-subgroup of a finite group G. Then conjugate of H

must be equal to itself (Since conjugate of a non T-group is a non T-group) and
hence H is normal in G. Thus H and G/H are both soluble, by [3], and so G is
soluble.

Theorem 2.2. If G is a finite simple group such that G has exactly n non
T-subgroups (n ≥ 1), then G is isomorphic to a subgroup of Sn.
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Proof. Let G be a finite simple group such that G has exactly n non T-
subgroups. Let Hi, i = 1, ..., n, be the set of non T-subgroups. Since G is a T-group,
each Hi is a proper subgroup of G. Also no Hi is a normal subgroup of G since G
is simple. Now define a mapping α : G −→ Sym{H1, ...,Hn} by gα : Hi −→ Hg

i .
Clearly α is a homomorphism. Since Im(α) is non trivial and G is simple, we must
have Ker(α) = {e}. So α : G −→ Sym{H1, ...,Hn} is a faithful representation.
But since Sym{H1, ...,Hn} ∼= Sn, there exists a faithful representation from G to
Sn. This implies that G is isomorphic to a subgroup of Sn.

Lemma 2.3. Let G be a finite group with exactly n non T-subgroups and suppose
that any finite group with exactly m non T-subgroups is soluble for 1 ≤ m ≤ n− 1.
Then if G contains a normal non T-subgroup, G is soluble.

Proof. Let N be a normal non T-subgroup of G. Clearly N contains less than n
non T-subgroups and hence (by our assumption) N is soluble.
Now we prove that G/N is soluble. For this we prove that G/N contains less than
n non T-subgroups. Let us suppose that G/N contains n non T-subgroups Hi/N
for i = 1, 2, · · · , n. Then clearly Hi’s are the non T-subgroups of G different from N
which shows that G contains more than n non T-subgroups, a contradiction. Thus
G/N contains less than n non T-subgroups and hence G/N is soluble. This implies
that G is soluble.

Lemma 2.4. If G is a finite group all of whose proper subgroups are T-groups
except for n, n = 2, 3, 4, then G is soluble.

Proof. Let G be an insoluble group containing exactly n proper non T-subgroups,
L = {H1 , · · · ,Hn}. Clearly each Hi contains fewer than n proper non T-subgroups
and so is soluble by the Lemma 2.3, no Hi can be normal. By the Theorem 2.2
there is a homomorphism α : G −→ Sn. Let K be the kernel of α. Then K cannot
contain any of the Hi (since K ≤ ∩Hi) and so K is soluble and in particular is a
T-group. Then we must have G/K isomorphic to an insoluble subgroup of Sn. But
Sn is soluble for n = 2, 3, 4., a contradiction. Hence G is soluble for n = 2, 3, 4.

3. Classification of groups having exactly five non T-subgroups

Theorem 2.5. Let G be a finite group having exactly five non T-subgroups.
Then G is either soluble or G is isomorphic to one of A5 and SL(2, 5).

Proof. Let G be an insoluble group containing exactly 5 proper non T-subgroups,
L = {H1 , · · · ,H5}. Clearly each Hi contains fewer than 5 proper non T-subgroups
and so is soluble by Lemma 2.4, no Hi can be normal. By the Theorem 2.3 there is
a homomorphism α : G −→ S5. Let K be the kernel of α. Then K cannot contain
any of the Hi (since K ≤ ∩Hi) and so K is soluble and in particular is a T-group.
Then we must have G/K isomorphic to an insoluble subgroup of S5. Since S5 has
too many non T-subgroups, we must have G/K ∼= A5. Since K is a soluble normal
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subgroup with G/K simple, K is the soluble radical of G.
For some i let S < Hi, then S is a T-subgroup of G. We claim that SK < Hi.
If SK = Hi, then SK/K ∼= S/S ∩ K. Since S is a T-subgroup of Hi. Therefore
S/S ∩ K is a T-group and hence Hi/K = HiK/K is a T-group, a contradiction.
Hence SK < Hi. Now we claim that K ⊂ Φ(Hi). If K * Φ(Hi), then there
is a maximal subgroup M of Hi such that K * M. This implies MK = Hi, a
contradiction. Therefore K ⊂ Φ(Hi) and hence, by Theorem 5.2.13(i) Robinson[2],
K ⊂ Φ(G). This implies that K is nilpotent. Hence K is Dedekind. Now, by
Theorem 9.3.5, Robinson [2], primes dividing |Φ(Hi)| also divide |Hi/Φ(Hi)| and
hence |Hi/K|. This means that |Φ(Hi)| and hence |K| is only divisible by 2 or 3.
Let P2(K) and P3(K) be the Sylow 2-subgroup and Sylow 3-subgroup of K. Then
K = P2(K)×P3(K). Since P3(K) is a normal subgroup of odd order of K and K is
Dedekind. Therefore P3(K) is Dedekind group of odd order and hence abelian. This
implies that K < CG(P3(K)) = C. Also P3(K) is a characteristic subgroup of K and
hence, by Theorem 1.5.6 (iii) Robinson [2], P3(K) is normal in G. This implies that
CG(P3(K)) = C is normal in G. That is C E G. If C C G then 1 6= C/K C G/K
but G/K ∼= A5, a contradiction. Therefore C = G. That is CG(P3(K)) = G and so
P3(K) ⊆ Z(G).
This implies that P3(K) is isomorphic to a subgroup of the Schur Multiplier of
A5. Since Schur Multiplier of A5 has order 2 (Theorem12.3.2ofKarpilovsky [1]).
Therefore P3(K) = {e}. Thus we have K = P2(K).
Again we must have P2(G) (Sylow 2-subgroup of G) is a T-group. If it is abelian,
then the same argument used for the Sylow 3-subgroup P3(K) shows K must be
trivial. Hence a Sylow 2-subgroup P2(G) of G must be Hamiltonian group (the direct
product of the quaternion group and an elementary abelian 2-group). We now have
P2(G)/(P2(G) ∩K) of order 4. Suppose that P2(G) ∩K 6= Z (P2(G)) . Then there
is an element of Z(P2(G)) not in K and hence KCG(K) is a normal subgroup of G
properly containing K. Then KCG(K) = G. Also G/CG(K) ∼= K/ (K ∩ CG (K)) is a
2-group and so is trivial. It follows that K ≤ CG(K) and CG(K) = G. Thus we must
have K ≤ Z(P2(G)) and since K has index 4 in P2(G) we must have K = Z(P2(G)).
We now have K = G′ ∩ Z(G) and so by Corollary 10.1.6 of Karpilovsky [1], K is
isomorphic to a subgroup of the Schur Multiplier of A5. Since Schur
Multiplier of A5 has order 2 (Theorem 12.3.2 of Karpilovsky [1]), K has order
1 or 2. If |K| = 1, then G ∼= A5. If |K| = 2, then G is a representing group
for A5. Since representing groups for perfect groups are unique up to isomorphism
(Corollary 11.5.8 of Karpilovsky [1]) and SL(2, 5) is a representing group for A5 (ie
SL(2, 5)/(SL(2, 5)′ ∩ Z(SL(2, 5))) ∼= A5), we must have G ∼= SL(2, 5).
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