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A CAUCHY PROBLEM FOR HELMHOLTZ EQUATION:
REGULARIZATION AND ERROR ESTIMATES

NGUYEN Huy TUAN AND PHAM HOANG QUAN

ABSTRACT. In this paper, the Cauchy problem for the Helmholtz equation is
investigated. It is known that such problem is severely ill-posed. We propose a
new regularization method to solve it based on the solution given by the method of
separation of variables. Error estimation and convergence analysis have been given.
Finally, we present numerical results for several examples and show the effectiveness
of the proposed method.
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1. INTRODUCTION

The Helmholtz equation arises in many physical applications (see, e.g., [1, 2, 4, 9, 12]
and the references therein). The direct problem for Helmholtz equation, i.e., Dirich-
let, Neumann or mixed boundary value problems have been studied extensively
in the past century. However, in some practical problems, the boundary data on
the whole boundary cannot be obtained. We only know the noisy data on a part
of the boundary of the concerning domain, which will lead to some inverse prob-
lems. The Cauchy problem for the Helmholtz equation is an inverse problem and is
severely ill-posed [3]. That means the solution does not depend continuously on the
given Cauchy data and any small perturbation in the given data may cause large
change to the solution. In recent years, the Cauchy problems associated with the
Helmholtz equation have been studied by using different numerical methods, such
as the Landweber method with boundary element method (BEM) [8], the conju-
gate gradient method [7], the method of fundamental solutions (MFS) [14] and so
on. However, most of numerical methods are short of stability analysis and error
estimate.

Although there exists a vast literature on the Cauchy problem for the Helmholtz
equation, to the authors knowledge, there are much fewer papers devoted to the
error estimates. Recently, in [6], the authors give a quasi-reversibility method for
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solving a Cauchy problem of modified Helmhotlz equation where they consider a
homogenous Neumann boundary condition, the results are less encouraging. The
main aim of this paper is to present a new regularization method, and investigate
the error estimate between the regularization solution and the exact one.

The paper is organized as follows. In Section 2, the regularization method is intro-
duced; in Section 3, some stability estimates are proved under some priori conditions;
in Section 4, some numerical results are reported.

2. MATHEMATICAL PROBLEM AND REGULARIZATION.

We consider the following Cauchy problem for the Helmholtz equation with nonho-
mogeneous Neumman boundary condition
Au+ k*u =0, (x,y) € (0,7) x (0,1)
u(0,y) = u(m,y) = 0,y € (0,1)
uy(x,0) = f(x), (z,y) € (0,7) x (0,1)
w(z,0) =g(z),0<z<m

(1)

where g(z), f(x) is a given vector in L2(0,7) and 0 < k < 1 is the wave number.
By the method of separation of variables, the solution of problem (1) is as follows

oo VTR | /P —ky N Y
ula,y) =3 | [ £ e gn+ [ € ‘ fu| sinne (2)
! 2 2/n? — 2

where

f(z) = Z fosinnz, g(x) = Zgn sinnx.
n=1 n=1

Physically, g can only be measured, there will be measurement errors, and we would
actually have as data some function g¢ € L?(0, 7), for which

lg¢ —gll <€

where the constant € > 0 represents a bound on the measurement error, ||.||denotes
the L?-norm. Denote [3 is the regularization parameter depend on e.
The case f = 0, the problem (1) becomes

Au + k*u =0, (z,y) € (0,7) x (0,1)
u(0,y) = u(m,y) =0,y € (0,1)
uy(2,0) =0, (z,y) € (0,7) x (0,1)
u(z,0) =g(z),0 <z <7
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Very recently, in [6], H-H.Quin and T.Wei considered (2) by the quasi-reversibility
method. They established the following problem for a fourth-order equation
Auf + k*uf — BQUQxyy =0,(z,y) € (0,7) x (0,1)
u(0,y) = u(m,y) = 0,y € (0,1)
Uy (z,0) =0, (z,y) € (0,7) x (0,1)
u(z,0) =g(z),0<z<m

Separation of variables leads to the solution of problem (4) as follows

n2_g2 n2_g2

o0 e\/my N 6‘\/1%—2"29
u(z,y) = Z 5 gn sinnx. (5)

n=1

We note the reader that the term eV %% in (2) increase rather quickly when n
become large, so it is the unstability cause. To regularization the problem (2), we
should replace it by the better terms. In (4), the authors replaced eVr? =k and

n2_ k2 n2_ k2
e~ ™ by two better terms e\/my and e_\/my respectively. Notice the reader
that in the case k = 0, the problem (4) is also considered in [10](See page 481).
To the author’s knowledge, although the problem (4) is investigated by some recent
paper but there are rarely results of regularize method for treating the problem (3)
until now. In this paper, we shall replace eVn?—k%y by the different better terms

(VPR =Bn?=k"))y 459 modify the exact solution u as follows

- eABnk)y 4 o= n?—k?y eABnk)y _ ef\/my .
u(z,y) = Z l( gn + fn | sinnz. (6)

2 N2 — k2

where A(8,n,k) = Vn? — k2 — 3(n? — k?). Let v¢ be the regularized solution corre-
sponding to the noisy data g€

- ABnk)y 4 o=vn?—ky ABnk)y _ o—V/n?—Ry
€ _ € + € € € e .
v(z,y) = E l( 5 ) 9n + ( Wy ) fn] sinnz. (7)

n=1

n=1
where g5 = 2 [ g(2) sin(nz)dz.
3. MAIN RESULTS

The following theorem proves that the solution of problem (7) depends continuously
on the given Cauchy data g°.
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Theorem 1Let v¢ and we be the solution of problem (7) and v¢(x,0) = g°(x), w(z,0) =
he(z). Assume that ||g¢ — h|| <€, then we have

1

[0°(.y) —w (., y)|| < ePe. (8)
Proof.
. o0 eA(ﬂyn,k)y 4 e—\/nQ_ka . eA(,B,n,k)y e /K2y .
v(2,y) = 7; [( 5 9n + W fn| sinnz. (9)
and
2 [ [ eABnky 4 o~VITRY\ ARy _ o—VnP—ky .
- ; [( B hin, + oy fn| sinnz.(10)
where
2 ™
hy, = —/ he(z) sin(nx)dx.
T Jo
It follows from (9) and (10) that

(gy, — hs,) sinnz.

U€($,y)— :I: y :Z

and (a + b)? < 2a% + 2b%, we have

> A(Bn.k)y VT 7y \ 2

s e +e

() —w L )l* = 52( ) g5, — hi,|?
n=1

2
T o0
< Z(e2e+1)2|g§ hi
n=1
1, o
< (e +1)lg—hl
< 6%62. (11)

This completes the proof of Theorem 1.

Theorem 2.Let ||u(.,1)|| < A;. Let f be a function such that

S (n? — k)RR p2 < gy, (12)
n=1
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Let 3= (In %)_1 then one has

—1
fute.) = oGl < VE+ () \/ﬁA + Ty (13)

for every y € [0,1), where v is the unique solution of Problem (7) .
Remark 1. 1. If f =0 then the error (13) becomes

-1
lu(z,y) — v (z, )| < Ve + <ln %) %

This error order is the same in the Theorem 3.1, in [6].
Proof. We have

o Vn2—k?y _ JA(Bnk)y VnZ—k%y _ ,A(Bm.k)y
u(z,y) — us(x,y) = Z [(e ¢ ) On + (e ¢ ) fnl sinn.

2v/n? — k2

We also have

VAT | TR N _ /TR
< u(z,1),sinnz >= ©on + Ny fn-
It implies that
5 NI _ /PR
< u(z,1),sinne > — T R

Pn f-

- eVnZ—k? + e—VnZ—k?2

Hence,
. eVni—k?y _ JA(Bnk)y
— i = u(x,1),sinnx >
<u($7y) u(fv,y),smmv> em_ﬁ_eim < ( ’ )7
eVni—k?y _ JA(Bn.k)y

(e\/n2fk2 + e*\/n27k2>2‘ /n2 — k2

+ (6 n2_k2 + e_\/n2_k2 _ 1)fn

Using the inequality (a + b)? < 2a® + 2b?, we have

IN

/n2—k2 _ 2_1.2
| < u(z,y) —u(z,y),sinne > |? 2 (e ] i)

eVn?—k? + e~ Vn?—k?
1 <emy _ eA(ﬂ,nJc)y) 2 P
2 Vn? — k2 "
< e2(y’1)mﬂ2(n2 — k)% < u(z,1),sinnz > 2 +
PR = RPN, (15)

2
) | < u(z,1),sinnz > |2 +
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(n27k2)2

For k,n > 0, it is easy to prove that TSy ety

< %. Thus, for y < 1
2
62(y—1)«/n2—k2)52(n2 . ]{?2)2 < 45 -
(1-y)
This follows that

432
(1—y)*

| < U(ZE,y) - ue(x,y),sinnx > ‘2 <

Thus

oo
i .
lu(z,y) —u(z,y)|? 0 Z | < u(z,y) — u(z,y),sinnz > |

n=1

IA

(1—y)t =

) 2
Tl DI + (5,

n=1

IN

From Theorem 1, we get
1
[0°(y) —u (L y)ll < eFe
From g = (lné)f1 and combining (11), (16) and (17), we obtain

[u(z,y) = v (z, 9| < Jul,y) = u (2, y)l| + [u(z, y) — v (2, y)]]

< eTet By —2 A+ A,
- (1—y)* 4

5 I 2 71'
< et4 (= —Z A+ A,
64+<l 6) \/(1—y)4A1+4 ’

Theorem 3.Let f be as Theorem 2. Suppose that u(.,1) satisfy the condition

Z(n2 —k*)?| < u(z,1),sinnz > |* < As.

n=1

Let 3= (In %)_1 then one has

1! :
fute.) = ool < (1) T A0+ Ta

1
< u(z,1),sinnz > |2 + 562(112 . k2)2e2 nz,kz)yfg_

271'62 > . ™ - \/n2—k?
Z < u(z,1),sinnz > [ + Zﬂ2 Z(n2 — k?)%e? F )yfﬁ
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for every y € [0,1], where v is the unique solution of Problem (7) .
Proof.1t follows from (15) that

| < u(z,y) —us(z,y),sinne > > < B2(n* - k)% <u(z,1),sinnz > > +

1 Yo )
+ 3 52y2(n2 — k2)e2 "Lkzyffl.
Then

I

(o]
71- .
u(z,y) — u(z,y) = 3 Z\ < u(z,y) —u(z,y),sinnz > |2

n=1

< gﬁ2(n2 — k)% < u(z,1),sinnz > |?
m 212
+Zﬂ2y2(n2 . k2)62myf2
<

T T
552143 + 152142-

lute.9) = (o) < 9y T As + o (19

From = (In %)_1 and combining (11), (18), we obtain

Therefore we get

luz, y) = v (z,y)ll < fluz,y) —u (@, 9)|| + [[u(z,y) = v (2, y)|

< ﬂ,/gAg + %A2 +etie
1\ ¢ [T T 3
(ln 6) 5143 + ZAQ + €4.

4. NUMERICAL RESULTS

IN

In this section, a simple example is devised for verifying the validity of the proposed
method. For the reader can make a comparison between this paper with [6] by using
same example with same parameters, we consider the problem

1
Ugy + Uyy + zu =0, (ﬂf,y) € (O,TI‘) X (07 1)

u(0,y) = u(m,y) =0,y € (0,1) (19)
uy(2,0) =0, (z,y) € (0,7) x (0,1)
u(z,0) =sin(z),0 <z <7
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The exact solution to this problem is
eFY 4B
u(z,y) = — ——sinz.

Let y = 1, we get u(z, 1) = 1.39903135064514 sin .
Let g, be the measured data

gm(z) = sin(x) + %sin(m:p).

So that the data error, at the t = 0 is

1 w1
= |9m — = — sin? =,4/—— <e
F(m) = ||gm — gl \//0 — sin (mx)dx \/;m <e

The solution of (19), corresponding the gy, is

The error in y =1 is

O(n) =l 1) =l )| = | [ "l

Then, we notice that

1
lim F(m)= lim — g =0, (20)

m— o0 m—oo M,

2\/m27% 72\/m27i
lim O(m)= lim (e te +2)\/§

m— 00 m— 00 4Am?2

= 00. (21)

From the two equalities above, we see that (19) is an ill-posed problem. Hence,
the Cauchy problem (19) cannot be solved by using classical numerical methods and
it needs regularization techniques.

Let € = \/g % By approximating the problem as in (15), the regularized solution is

! o [Vttt =Dy -yt . .
v(z,y) = Z 5 < gm(x),sinnz > | sinnz. (22)

n=1
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Table 1: The error of the method in this paper.

€ Ve ae = |[ve(-,1) —u(., 1)
e =10"%/% 1.38790989314992 sin(z) 0.0139386799063127
+4,994531108 x 10~ 14 sin(100x)
e =10"%/F 1.39891961780226 sin(z) 0.000140036351583956
+3.712424644 x 107119 sin(10%x)
e3=10"19/% 1.39903135053340 sin () 1.40045321703634 x 10~ 1Y
+6.716243945 x 10~ 1100129330 4iyy (10107,)

Let y = 1, the solution is written as

Jo( 1) = u( Dl = 5

Table 1 shows the the error between the regularization solution v¢ and the exact
solution u, for three values of e. We have the table numerical test by choose some
values as follows

1. e= 10*2\/§ corresponding to m = 102,

2. e= 10_4\/§ corresponding to m = 10%.

3. e= 10*10\/§ corresponding to m = 100,

By applying the method in [6], we have the approximated solution

2T 21
s \/HT‘%?J —\/Hﬁ‘iy
w(zr,y) = Z ¢ +2€ < gm(z),sinnx >| sinnz. (23)

n=1

Let y = 1, we have

n2_1 n2_1
4 y _ 4 y
e 1+e'n.2 + e 1+en2

x
w(z,1) = E 5 < gm(x),sinnx > | sinnz
n=1
= vy ]
eV itie 4 ¢ It e 1+em?2 +e 14+em?2 )
= sinx + sin mx
2 2m
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[w(, 1) —u(, D] =

— —— 2
Vo et (VR

T e 4+4e + e 4+4e 67 + 6_7 e 1+6’m _|_ e l+57n2

= - +

2 2 2 2m

S

We note that if we choose € and m such that € = ﬁ% then ||w(.,1) —u(.,1)]| does
not converges to zero. Thus, to compare the error of two method, we choose some
same parameter values to get the table numerical test as follows

1. e = 1072,/ corresponding to m = 10%.

2. e=10"7 corresponding to m = 10%.

3. €= 10*4\/; corresponding to m = 10%°.

BB NE]

Table 2: The error of the method in the paper [6]

€ w [[w — ull
1072 vy = 1.39379109494861 sin(x) + 0.3786841911 sin(10%x) 0.474655690138409
10~ 5\/_ 1.39850107010763 sin(z) + 0.0009255956190 sin(101°x) 0.00133695472487849
104 1.39850107010763 sin(x) + 9.255956190 x 10~ '9sin(10?°z) | 0.000664608094405560

Looking at Tables 1,2,3 a comparison between the two methods, we can see the error
results of in Table 3 are smaller than the errors in Tables 2. In the same parameter
regularization, the error is Table 1 and 3 converges to zero more quickly many times
than the Table 2 . This shows that our approach has a nice regularizing effect and

give a better approximation with comparison to the many previous results, such as
[5, 6, 14].

Table 3: The different error of the method in this paper.

Ve ae = ||ve(-, 1) —u(., 1)
e =10"2/% 1.38790989314992 sin(x) 0.0139386799063127
+5,667504490 x 10~43*8 sin(10* x )
e2=1073,/2 1.39891961780226 sin(x) 0.000140036351583956
+7.548683905 x 104342953 5in(101%2)
e3=10"1/% 1.39902017688822 sin(x) 0.0000140042275147629
+6.247671360 x 10434294492 5 (1020:)
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