ON SOME CLASSES OF MEROMORPHIC FUNCTIONS DEFINED BY A MULTIPLIER TRANSFORMATION

Alina Totoi

ABSTRACT. For $p \in \mathbb{N}^*$ let Σ_p denote the class of meromorphic functions of the form $g(z) = \frac{a_{-p}}{z^p} + a_0 + a_1 z + \cdots$, $z \in \dot{U}$, $a_{-p} \neq 0$. In the present paper we introduce some new subclasses of the class Σ_p , denoted by $\Sigma S_{p,\lambda}^n(\alpha)$ and $\Sigma S_{p,\lambda}^n(\alpha,\delta)$, which are defined by a multiplier transformation, and we study some properties of these subclasses.

2010 Mathematics Subject Classification: 30C45.

Keywords: meromorphic functions, multiplier transformations.

1. Introduction and preliminaries

Let $U = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disc in the complex plane, $\dot{U} = U \setminus \{0\}$, $H(U) = \{f : U \to \mathbb{C} : f \text{ is holomorphic in } U\}$, $\mathbb{Z} = \{\ldots -1, 0, 1, \ldots\}$, $\mathbb{N} = \{0, 1, 2, \ldots\}$ and $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$.

For $p \in \mathbb{N}^*$ let Σ_p denote the class of meromorphic functions in \dot{U} of the form

$$g(z) = \frac{a_{-p}}{z^p} + a_0 + a_1 z + \dots, z \in \dot{U}, a_{-p} \neq 0.$$

We will also use the following notations:

$$\begin{split} &\Sigma_{p,0} = \{g \in \Sigma_p : a_{-p} = 1\}, \\ &\Sigma_p^*(\alpha) = \left\{g \in \Sigma_p : \operatorname{Re}\left[-\frac{zg'(z)}{g(z)}\right] > \alpha, \ z \in U\right\}, \text{ where } \alpha < p, \\ &\Sigma_p^*(\alpha,\delta) = \left\{g \in \Sigma_p : \alpha < \operatorname{Re}\left[-\frac{zg'(z)}{g(z)}\right] < \delta, \ z \in U\right\}, \text{ where } \alpha < p < \delta, \\ &H[a,n] = \{f \in H(U) : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \ldots\} \text{ for } a \in \mathbb{C}, \ n \in \mathbb{N}^*, \\ &A_n = \{f \in H(U) : f(z) = z + a_{n+1} z^{n+1} + a_{n+2} z^{n+2} + \ldots\}, \ n \in \mathbb{N}^*, \text{ and for } n = 1 \\ &\text{we denote } A_1 \text{ by } A \text{ and this set is called } the \ class \ of \ analytic \ functions \ normalized \ at \ the \ origin. \end{split}$$

We know that $\Sigma_1^*(\alpha)$ is the class of meromorphic starlike functions of order α , when $0 \le \alpha < 1$.

For $n \in \mathbb{Z}$, $p \in \mathbb{N}^*$, $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > p$, let the operator $J_{p,\lambda}^n$ on Σ_p be defined as

$$J_{p,\lambda}^n g(z) = \frac{a_{-p}}{z^p} + \sum_{k=0}^\infty \left(\frac{\lambda-p}{k+\lambda}\right)^n a_k z^k, \text{ where } g(z) = \frac{a_{-p}}{z^p} + \sum_{k=0}^\infty a_k z^k.$$

Let $p \in \mathbb{N}^*$, $\lambda \in \mathbb{C}$ with Re $\lambda > p$. We have:

1.
$$J_{p,\lambda}^{-1}g(z) = \frac{1}{\lambda - p}zg'(z) + \frac{\lambda}{\lambda - p}g(z), g \in \Sigma_p,$$

2.
$$J_{p,\lambda}^0 g(z) = g(z), g \in \Sigma_p,$$

3.
$$J_{p,\lambda}^1 g(z) = \frac{\lambda - p}{z^{\lambda}} \int_0^z t^{\lambda - 1} g(t) dt = J_{p,\lambda}(g)(z), \ g \in \Sigma_p,$$

4. If
$$g \in \Sigma_p$$
 with $J_{p,\lambda}^n g \in \Sigma_p$, then $J_{p,\lambda}^m (J_{p,\lambda}^n g) = J_{p,\lambda}^{n+m} g$, for $m, n \in \mathbb{Z}$.

Remark 1. Let $p \in \mathbb{N}^*$ and $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > p$. We know from [7] that if $g \in \Sigma_p$, then $J_{p,\lambda}(g) \in \Sigma_p$, hence, using item 4 and the induction, we obtain

$$J_{p,\lambda}^n g \in \Sigma_p$$
 for all $n \in \mathbb{N}^*$.

We notice from item 1 that for $g \in \Sigma_p$ we have $J_{p,\lambda}^{-1}g \in \Sigma_p$, so

$$J_{p,\lambda}^{-n}g \in \Sigma_p$$
 for all $n \in \mathbb{N}^*$.

Therefore, for $n \in \mathbb{Z}$, $p \in \mathbb{N}^*$, $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > p$, we have $J_{p,\lambda}^n : \Sigma_p \to \Sigma_p$.

Now it is easy to see that we have the next properties for $J^n_{p,\lambda}$, when $\operatorname{Re} \lambda > p$:

1.
$$J_{p,\lambda}^n(J_{p,\lambda}^mg(z))=J_{p,\lambda}^{n+m}g(z), n,m\in\mathbb{Z}, g\in\Sigma_p$$
,

2.
$$J_{p,\gamma}^n(J_{p,\lambda}^mg(z)) = J_{p,\lambda}^m(J_{p,\gamma}^ng(z)), n, m \in \mathbb{Z}, g \in \Sigma_p, \operatorname{Re}\gamma > p,$$

3.
$$J_{p,\lambda}^n(g_1+g_2)(z) = J_{p,\lambda}^n g_1(z) + J_{p,\lambda}^n g_2(z)$$
, for $g_1, g_2 \in \Sigma_p$, $n \in \mathbb{Z}$,

4.
$$J_{p,\lambda}^n(cg)(z) = cJ_{p,\lambda}^ng(z), c \in \mathbb{C}^*, n \in \mathbb{Z},$$

5.
$$J_{p,\lambda}^{n}(zg'(z)) = z(J_{p,\lambda}^{n}g(z))' = (\lambda - p)J_{p,\lambda}^{n-1}g(z) - \lambda J_{p,\lambda}^{n}g(z), n \in \mathbb{Z}, g \in \Sigma_{p}.$$

Remark 2. 1. When $\lambda = 2$ and p = 1, we have

$$J_{1,2}^{n}g(z) = \frac{a_{-1}}{z} + \sum_{k=0}^{\infty} (k+2)^{-n} a_k z^k,$$

and this operator was studied by Cho and Kim [1] for $n \in \mathbb{Z}$ and by Uralegaddi and Somanatha [8] for n < 0.

2. We also have

$$z^2 J_{1,2}^n g(z) = D^n(z^2 g(z)), g \in \Sigma_{1,0},$$

where D^n is the well-known Sălăgean differential operator of order n [5], defined by $D^n f(z) = z + \sum_{k=2}^{\infty} k^n a_k z^k$, $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$.

- 3. $J_{p,\lambda}^n$ is an extension to the meromorphic functions of the operator K_p^n , defined on $A(p) = \left\{ f \in H(U) : f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \right\}$, introduced in [6]. Also, for $n \geq 0$ we find that K_p^n is the Komatu linear operator, defined in [2].
- 4. It is easy to see that for n>0, $J^n_{p,\lambda}$ is an integral operator while $J^{-n}_{p,\lambda}$ is a differential operator with the property $J^{-n}_{p,\lambda}(J^n_{p,\lambda}g(z))=g(z)$.

Lemma 1. [7] Let $n \in \mathbb{N}^*$, $\alpha, \beta \in \mathbb{R}$, $\gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma - \alpha \beta > 0$. If $P \in H[P(0), n]$ with $P(0) \in \mathbb{R}$ and $P(0) > \alpha$, then we have

$$\operatorname{Re}\left[P(z) + \frac{zP'(z)}{\gamma - \beta P(z)}\right] > \alpha \Rightarrow \operatorname{Re}P(z) > \alpha, \ z \in U.$$

Definition 1. [3, pg. 46], [4, pg. 228] Let $c \in \mathbb{C}$ with $\operatorname{Re} c > 0$ and $n \in \mathbb{N}^*$. We consider

$$C_n = C_n(c) = \frac{n}{\operatorname{Re} c} \left[|c| \sqrt{1 + \frac{2\operatorname{Re} c}{n}} + \operatorname{Im} c \right].$$

If the univalent function $R: U \to \mathbb{C}$ is given by $R(z) = \frac{2C_n z}{1 - z^2}$, then we denote by $R_{c,n}$ the "Open Door" function, defined as

$$R_{c,n}(z) = R\left(\frac{z+b}{1+\bar{b}z}\right) = 2C_n \frac{(z+b)(1+\bar{b}z)}{(1+\bar{b}z)^2 - (z+b)^2}$$

where $b = R^{-1}(c)$.

Theorem 1. [7] Let $p \in \mathbb{N}^*$, $\Phi, \varphi \in H[1,p]$ with $\Phi(z)\varphi(z) \neq 0$, $z \in U$. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0$, $\delta + p\beta = \gamma + p\alpha$ and $\operatorname{Re}(\gamma - p\beta) > 0$. Let $g \in \Sigma_p$ and suppose that

$$\alpha \frac{zg'(z)}{g(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \delta \prec R_{\delta-p\alpha,p}(z).$$

If $G = J_{p,\alpha,\beta,\gamma,\delta}^{\Phi,\varphi}(g)$ is defined by

$$G(z) = J_{p,\alpha,\beta,\gamma,\delta}^{\Phi,\varphi}(g)(z) = \left[\frac{\gamma - p\beta}{z^{\gamma}\Phi(z)} \int_{0}^{z} g^{\alpha}(t)\varphi(t)t^{\delta - 1}dt \right]^{\frac{1}{\beta}},\tag{1}$$

then $G \in \Sigma_p$ with $z^p G(z) \neq 0$, $z \in U$, and

$$\operatorname{Re}\left[\beta\frac{zG'(z)}{G(z)} + \frac{z\Phi'(z)}{\Phi(z)} + \gamma\right] > 0, \ z \in U.$$

All powers in (1) are principal ones.

Taking $\beta=\alpha=1, \delta=\gamma, \Phi=\varphi\equiv 1$, in the above theorem, and using the notation $J_{p,\gamma}$ instead of $J_{p,1,1,\gamma,\gamma}^{1,1}$, we obtain the corollary:

Corollary 1. Let $p \in \mathbb{N}^*$, $\gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma > p$ and let the function $g \in \Sigma_p$ satisfying the condition

$$\frac{zg'(z)}{g(z)} + \gamma \prec R_{\gamma - p, p}(z), \ z \in U.$$

Then

$$G(z) = J_{p,\gamma}(g)(z) = \frac{\gamma - p}{z^{\gamma}} \int_0^z g(t) t^{\gamma - 1} dt \in \Sigma_p,$$

with $z^pG(z) \neq 0$, $z \in U$, and Re $\left[\gamma + \frac{zG'(z)}{G(z)}\right] > 0$, $z \in U$.

2. Main results

Definition 2. For $p \in \mathbb{N}^*$, $n \in \mathbb{Z}$, $\lambda \in \mathbb{C}$, $\operatorname{Re} \lambda > p$ and $\alpha we define$

$$\Sigma S_{p,\lambda}^{n}(\alpha) = \left\{ g \in \Sigma_{p} : \operatorname{Re} \left[-\frac{z \left(J_{p,\lambda}^{n} g(z) \right)'}{J_{p,\lambda}^{n} g(z)} \right] > \alpha, \ z \in U \right\},$$

$$\Sigma S_{p,\lambda}^{n}(\alpha,\delta) = \left\{ g \in \Sigma_{p} : \alpha < \operatorname{Re} \left[-\frac{z \left(J_{p,\lambda}^{n} g(z) \right)'}{J_{p,\lambda}^{n} g(z)} \right] < \delta, \ z \in U \right\}.$$

- **Remark 3.** 1. We have $g \in \Sigma S_{p,\lambda}^n(\alpha)$ if and only if $J_{p,\lambda}^n g \in \Sigma_p^*(\alpha)$, respectively $g \in \Sigma S_{p,\lambda}^n(\alpha,\delta)$ if and only if $J_{p,\lambda}^n g \in \Sigma_p^*(\alpha,\delta)$.
 - 2. Using the equality $z(J^n_{p,\lambda}g(z))'=(\lambda-p)J^{n-1}_{p,\lambda}g(z)-\lambda J^n_{p,\lambda}g(z)$, we can easy see that for Re $\lambda>p$ the condition

$$\alpha < \operatorname{Re} \left[-\frac{z \left(J_{p,\lambda}^n g(z) \right)'}{J_{p,\lambda}^n g(z)} \right] < \delta, z \in U,$$

is equivalent to

$$\operatorname{Re} \lambda - \delta < \operatorname{Re} \left[(\lambda - p) \frac{J_{p,\lambda}^{n-1} g(z)}{J_{p,\lambda}^{n} g(z)} \right] < \operatorname{Re} \lambda - \alpha, \ z \in U.$$
 (2)

3. We have

$$\Sigma S^0_{p,\lambda}(\alpha,\delta) = \Sigma^*_p(\alpha,\delta),$$

$$\Sigma S^1_{p,\lambda}(\alpha,\delta) = \left\{ g \in \Sigma_p : G(z) = \frac{\lambda - p}{z^\lambda} \int_0^z t^{\lambda - 1} g(t) dt \in \Sigma^*_p(\alpha,\delta) \right\}.$$

The following theorem gives us a connection between the sets $\Sigma S_{p,\lambda}^n(\alpha)$ and $\Sigma S_{p,\lambda}^{n-1}(\alpha)$, respectively between $\Sigma S_{p,\lambda}^n(\alpha,\delta)$ and $\Sigma S_{p,\lambda}^{n-1}(\alpha,\delta)$.

Theorem 2. Let $p \in \mathbb{N}^*$, $n \in \mathbb{Z}$, $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > p$, $\alpha and <math>g \in \Sigma_p$. Then

$$g \in \Sigma S_{p,\lambda}^n(\alpha) \Leftrightarrow J_{p,\lambda}(g) \in \Sigma S_{p,\lambda}^{n-1}(\alpha),$$

respectively

$$g \in \Sigma S_{p,\lambda}^n(\alpha,\delta) \Leftrightarrow J_{p,\lambda}(g) \in \Sigma S_{p,\lambda}^{n-1}(\alpha,\delta),$$

where
$$J_{p,\lambda}(g)(z) = \frac{\lambda - p}{z^{\lambda}} \int_0^z t^{\lambda - 1} g(t) dt$$
.

Proof. We know that $g \in \Sigma S^n_{p,\lambda}(\alpha,\delta)$ is equivalent to $J^n_{p,\lambda}g \in \Sigma^*_p(\alpha,\delta)$. Since $J^n_{p,\lambda}g = J^{n-1}_{p,\lambda}(J^1_{p,\lambda}g)$, we have $J^{n-1}_{p,\lambda}(J^1_{p,\lambda}g) \in \Sigma^*_p(\alpha,\delta)$, which is equivalent to

$$J_{p,\lambda}^1(g) \in \Sigma S_{p,\lambda}^{n-1}(\alpha,\delta).$$

Since $J_{p,\lambda}^1(g) = J_{p,\lambda}(g)$, we obtain $J_{p,\lambda}(g) \in \Sigma S_{p,\lambda}^{n-1}(\alpha,\delta)$. Therefore,

$$g \in \Sigma S_{p,\lambda}^n(\alpha,\delta) \Leftrightarrow J_{p,\lambda}(g) \in \Sigma S_{p,\lambda}^{n-1}(\alpha,\delta).$$

The proof for the first equivalence is similar, so we omit it.

A corollary presented in [7] holds that:

Corollary 2. [7] Let $p \in \mathbb{N}^*$, $\gamma \in \mathbb{C}$ and $\alpha . If <math>g \in \Sigma_p^*(\alpha, \delta)$, then $G = J_{p,\gamma}(g) \in \Sigma_p^*(\alpha, \delta)$.

Theorem 3. Let $p \in \mathbb{N}^*$, $n \in \mathbb{Z}$, $\lambda, \gamma \in \mathbb{C}$ with $\operatorname{Re} \lambda > p$ and $\alpha . Then$

$$g \in \Sigma S_{p,\lambda}^n(\alpha,\delta) \Rightarrow J_{p,\gamma}(g) \in \Sigma S_{p,\lambda}^n(\alpha,\delta).$$

Proof. Because $g\in \Sigma S^n_{p,\lambda}(\alpha,\delta)$ we have $J^n_{p,\lambda}(g)\in \Sigma^*_p(\alpha,\delta)$, hence, from Corollary 2, we obtain

$$J_{p,\gamma}(J_{p,\lambda}^n(g)) \in \Sigma_p^*(\alpha,\delta).$$

Using the fact that $J_{p,\gamma}^1(J_{p,\lambda}^n(g)) = J_{p,\lambda}^n(J_{p,\gamma}^1(g))$, where $J_{p,\gamma}^1(g) = J_{p,\gamma}(g)$, we obtain

$$J_{p,\lambda}^n(J_{p,\gamma}(g)) \in \Sigma_p^*(\alpha,\delta),$$

which is equivalent to $J_{p,\gamma}(g) \in \Sigma S_{p,\lambda}^n(\alpha,\delta)$.

Corollary 3. Let $n \in \mathbb{Z}$, $p \in \mathbb{N}^*$, $\lambda \in \mathbb{C}$ and $\alpha . Then we have$

$$\Sigma S_{p,\lambda}^n(\alpha,\delta) \subset \Sigma S_{p,\lambda}^{n+1}(\alpha,\delta).$$

Proof. Let $g \in \Sigma S_{p,\lambda}^n(\alpha, \delta)$. Taking $\gamma = \lambda$ in Theorem 3 we have $J_{p,\lambda}(g) \in \Sigma S_{p,\lambda}^n(\alpha, \delta)$, which, from Theorem 2, is equivalent to $g \in \Sigma S_{p,\lambda}^{n+1}(\alpha, \delta)$. And the result follows.

П

A theorem presented in [7] holds that:

Theorem 4. [7] Let $p \in \mathbb{N}^*$, $\beta > 0$, $\gamma \in \mathbb{C}$ and $\alpha .$

If $g \in \Sigma_p^*(\alpha, \delta)$, with

$$\beta \frac{zg'(z)}{g(z)} + \gamma \prec R_{\gamma - p\beta, p}(z), z \in U,$$

then $G = J_{p,\beta,\gamma}(g) \in \Sigma_p^*(\alpha,\delta)$.

Using this theorem, for $\beta = 1$, we get the next result.

Theorem 5. Let $n \in \mathbb{Z}$, $p \in \mathbb{N}^*$, $\lambda, \gamma \in \mathbb{C}$ with $\operatorname{Re} \lambda > p$ and $\alpha . If <math>g \in \Sigma S_{p,\lambda}^n(\alpha, \delta)$ and satisfies the condition

$$\frac{z\left[J_{p,\lambda}^n(g)(z)\right]'}{J_{p,\lambda}^n(g)(z)} + \gamma \prec R_{\gamma-p,p}(z), \ z \in U,$$

then $J_{p,\gamma}(g) \in \Sigma S_{p,\lambda}^n(\alpha,\delta)$.

We omit the proof because it is similar with that of Theorem 3. If we consider in Theorem 5 that $\delta \to \infty$ we get:

Theorem 6. Let $n \in \mathbb{Z}$, $p \in \mathbb{N}^*$, $\lambda, \gamma \in \mathbb{C}$ with $\operatorname{Re} \lambda > p$ and $\alpha . If <math>g \in \Sigma S_{n,\lambda}^n(\alpha)$ and satisfies the condition

$$\frac{z\left[J_{p,\lambda}^{n}(g)(z)\right]'}{J_{p,\lambda}^{n}(g)(z)} + \gamma \prec R_{\gamma-p,p}(z), \ z \in U,$$

then $J_{p,\gamma}(g) \in \Sigma S_{p,\lambda}^n(\alpha)$.

Theorem 7. Let $n \in \mathbb{N}$, $p \in \mathbb{N}^*$, $\lambda, \gamma \in \mathbb{C}$ and $\alpha . If <math>h \in \Sigma S^n_{p,\lambda}(\alpha,\delta)$ and satisfies the condition

$$\frac{zh'(z)}{h(z)} + \gamma \prec R_{\gamma - p, p}(z), \ z \in U,$$

then $J_{p,\gamma}(h) \in \Sigma S_{p,\lambda}^n(\alpha,\delta)$.

Proof. Let us denote $H = J_{p,\gamma}(h)$. Because the conditions of Corollary 1 are full-filled, we have $H \in \Sigma_p$ with $z^p H(z) \neq 0$, $z \in U$, and

$$\operatorname{Re}\left[\frac{zH'(z)}{H(z)} + \gamma\right] > 0, \ z \in U. \tag{3}$$

Since Re $\gamma \leq$ Re λ , we obtain from (3) that Re $\left[\frac{zH'(z)}{H(z)} + \lambda\right] > 0$, $z \in U$. Using now Corollary 1, we have $J_{p,\lambda}H \in \Sigma_p$ with $z^pJ_{p,\lambda}H(z) \neq 0$, $z \in U$, and

Re
$$\left[\frac{z(J_{p,\lambda}H)'(z)}{J_{p,\lambda}H(z)} + \lambda\right] > 0, z \in U.$$

By induction, we obtain $z^p J^n_{p,\lambda} H(z) \neq 0$, $z \in U$, and

$$\operatorname{Re}\left[\frac{z(J_{p,\lambda}^{n}H)'(z)}{J_{p,\lambda}^{n}H(z)} + \lambda\right] > 0, \ z \in U.$$
(4)

Since Re $\lambda \leq \delta$, we get from (4) that

$$\operatorname{Re}\left[-\frac{z(J_{p,\lambda}^{n}H)'(z)}{J_{p,\lambda}^{n}H(z)}\right] < \delta, \ z \in U.$$
(5)

From the definition of H we have

$$\gamma H(z) + zH'(z) = (\gamma - p)h(z), \ z \in \dot{U}. \tag{6}$$

We apply the operator $J_{p,\lambda}^n$ to (6) and after using the properties of $J_{p,\lambda}^n$, we obtain

$$(\gamma - p)J_{p,\lambda}^n h(z) = \gamma J_{p,\lambda}^n H(z) + z(J_{p,\lambda}^n H(z))'. \tag{7}$$

From $h \in \Sigma S_{p,\lambda}^n(\alpha,\delta)$, we have

$$\alpha < \operatorname{Re}\left[-\frac{z(J_{p,\lambda}^n h(z))'}{J_{p,\lambda}^n h(z)}\right] < \delta,$$

which is equivalent to (see Remark 3, item 2)

$$\operatorname{Re} \lambda - \delta < \operatorname{Re} \left[(\lambda - p) \frac{J_{p,\lambda}^{n-1} h(z)}{J_{p,\lambda}^{n} h(z)} \right] < \operatorname{Re} \lambda - \alpha.$$
 (8)

From (7), we have

$$(\lambda - p) \frac{J_{p,\lambda}^{n-1} h(z)}{J_{p,\lambda}^{n} h(z)} = (\lambda - p) \frac{\gamma J_{p,\lambda}^{n-1} H(z) + z (J_{p,\lambda}^{n-1} H(z))'}{\gamma J_{p,\lambda}^{n} H(z) + z (J_{p,\lambda}^{n} H(z))'}.$$
 (9)

Let us denote $P(z) = -\frac{z(J_{p,\lambda}^n H(z))'}{J_{p,\lambda}^n H(z)}$. Using the fact that

$$z(J_{p,\lambda}^nH(z))' = (\lambda - p)J_{p,\lambda}^{n-1}H(z) - \lambda J_{p,\lambda}^nH(z),$$

we obtain

$$P(z) = (p - \lambda) \frac{J_{p,\lambda}^{n-1} H(z)}{J_{p,\lambda}^n H(z)} + \lambda, \ z \in U.$$

Hence

$$\frac{J_{p,\lambda}^{n-1}H(z)}{J_{p,\lambda}^{n}H(z)} = \frac{P(z) - \lambda}{p - \lambda}.$$
 (10)

If we apply the logarithmic differential to (10), we get

$$\frac{z(J_{p,\lambda}^{n-1}H(z))'}{J_{p,\lambda}^{n-1}H(z)} - \frac{z(J_{p,\lambda}^nH(z))'}{J_{p,\lambda}^nH(z)} = \frac{zP'(z)}{P(z)-\lambda},$$

so,

$$\frac{z(J_{p,\lambda}^{n-1}H(z))'}{J_{p,\lambda}^{n-1}H(z)} = -P(z) + \frac{zP'(z)}{P(z) - \lambda}.$$
(11)

Using (10) and (11) we obtain from (9),

$$(\lambda - p) \frac{J_{p,\lambda}^{n-1} h(z)}{J_{p,\lambda}^{n} h(z)} = (\lambda - p) \frac{J_{p,\lambda}^{n-1} H(z)}{J_{p,\lambda}^{n} H(z)} \cdot \frac{\gamma + \frac{z(J_{p,\lambda}^{n-1} H(z))'}{J_{p,\lambda}^{n-1} H(z)}}{\gamma + \frac{z(J_{p,\lambda}^{n} H(z))'}{J_{p,\lambda}^{n} H(z)}} =$$

$$= (\lambda - p) \frac{P(z) - \lambda}{p - \lambda} \cdot \frac{\gamma - P(z) + \frac{zP'(z)}{P(z) - \lambda}}{\gamma - P(z)} = \lambda - P(z) + \frac{zP'(z)}{P(z) - \gamma}. \tag{12}$$

From (8) and (12), we get

$$\operatorname{Re} \lambda - \delta < \operatorname{Re} \left[\lambda - P(z) + \frac{zP'(z)}{P(z) - \gamma} \right] < \operatorname{Re} \lambda - \alpha,$$

which is equivalent to

$$\alpha < \operatorname{Re}\left[P(z) + \frac{zP'(z)}{\gamma - P(z)}\right] < \delta.$$
 (13)

Because we know from (5) that $\operatorname{Re} P(z) < \delta$, $z \in U$, we have only to verify that $\operatorname{Re} P(z) > \alpha$, $z \in U$. To show this we will use Lemma 1.

We know that $J_{p,\lambda}^n H \in \Sigma_p$ and since we have proved that $z^p J_{p,\lambda}^n H(z) \neq 0$, $z \in U$, we get that P is analytic in U. We also have $\operatorname{Re} \gamma - \alpha > 0$ and $P(0) = p > \alpha$. Since the hypothesis of Lemma 1 is fulfilled for $\beta = 1$, we obtain $\operatorname{Re} P(z) > \alpha$, $z \in U$, which is equivalent to

$$\operatorname{Re}\left[-\frac{z(J_{p,\lambda}^{n}H(z))'}{J_{p,\lambda}^{n}H(z)}\right] > \alpha, \ z \in U.$$
(14)

Since $H \in \Sigma_p$, we get from (5) and (14) that $H \in \Sigma S_{p,\lambda}^n(\alpha,\delta)$.

If we consider $\gamma = \lambda$, in the above theorem, we obtain:

Corollary 4. Let $n \in \mathbb{N}$, $p \in \mathbb{N}^*$, $\lambda \in \mathbb{C}$ and $h \in \Sigma S_{p,\lambda}^n(\alpha, \delta)$ with $\alpha . If$

$$\frac{zh'(z)}{h(z)} + \lambda \prec R_{\lambda - p, p}(z), \ z \in U.$$

Then $J_{p,\lambda}(h) \in \Sigma S_{p,\lambda}^n(\alpha,\delta)$.

Taking n = 0 in Corollary 4, we get:

Corollary 5. Let $p \in \mathbb{N}^*$, $\lambda \in \mathbb{C}$ and $\alpha . If <math>h \in \Sigma_p^*(\alpha, \delta)$ with

$$\frac{zh'(z)}{h(z)} + \lambda \prec R_{\lambda - p, p}(z), \ z \in U,$$

then $J_{p,\lambda}(h) \in \Sigma_p^*(\alpha,\delta)$.

If in Corollary 5 we consider $\delta \mapsto \infty$ we have the next result:

Corollary 6. Let $p \in \mathbb{N}^*$, $\lambda \in \mathbb{C}$ and $\alpha . If <math>h \in \Sigma_p^*(\alpha)$ with

$$\frac{zh'(z)}{h(z)} + \lambda \prec R_{\lambda - p, p}(z), \ z \in U,$$

then $J_{p,\lambda}(h) \in \Sigma_p^*(\alpha)$.

We remark that Corollary 5 and Corollary 6 were also obtained in [7].

Theorem 8. Let $n \in \mathbb{Z}$, $p \in \mathbb{N}^*$, $\lambda, \gamma \in \mathbb{C}$ with $\operatorname{Re} \lambda > p$ and $\alpha . If <math>g \in \Sigma S_{p,\lambda}^n(\alpha)$ with $J_{p,\gamma}(J_{p,\lambda}^n(g)(z)) \neq 0$, $z \in \dot{U}$, then

$$J_{p,\gamma}(g) \in \Sigma S_{p,\lambda}^n(\alpha).$$

Proof. Let $G = J_{p,\gamma}(g)$. We know from Remark 1 that if $g \in \Sigma_p$ and $\operatorname{Re} \gamma > p$, then $G \in \Sigma_p$.

Let

$$P(z) = -\frac{z(J_{p,\lambda}^n G(z))'}{J_{p,\lambda}^n G(z)}, z \in U.$$

We have $J^n_{p,\lambda}(G)=J^n_{p,\lambda}(J_{p,\gamma}(g))=J_{p,\gamma}(J^n_{p,\lambda}(g))\neq 0$ în \dot{U} . So $P\in H(U)$. Making some calculations, similar to those from the proof of Theorem 7, we get:

$$-\frac{z(J_{p,\lambda}^ng(z))'}{J_{p,\lambda}^ng(z)}=P(z)+\frac{zP'(z)}{\gamma-P(z)},\,z\in U.$$

From $g \in \Sigma S_{p,\lambda}^n(\alpha)$ we have

$$\operatorname{Re}\left[-\frac{z(J^n_{p,\lambda}g(z))'}{J^n_{p,\lambda}g(z)}\right] > \alpha, \, z \in U,$$

which is equivalent to

Re
$$\left[P(z) + \frac{zP'(z)}{\gamma - P(z)}\right] > \alpha, z \in U.$$

Since $P \in H(U)$ with $P(0) = p > \alpha$ and $\operatorname{Re} \gamma > \alpha$, we have from Lemma 1 (when $\beta = 1$) that $\operatorname{Re} P(z) > \alpha$, $z \in U$, hence

$$G = J_{p,\gamma}(g) \in \Sigma S_{p,\lambda}^n(\alpha).$$

Taking n = 0 and $\lambda = \gamma$ in the above theorem we get the next corollary, which was also obtained in [7].

Corollary 7. Let $p \in \mathbb{N}^*$, $\gamma \in \mathbb{C}$ and $\alpha .$ $If <math>g \in \Sigma_p^*(\alpha)$ with $z^p J_{p,\gamma}(g)(z) \neq 0$, $z \in U$, then $J_{p,\gamma}(g) \in \Sigma_p^*(\alpha)$.

References

- [1] N.E. Cho, Ji A. Kim, On certain classes of meromorphically starlike functions, Internat. J. Math. & Math. Sci., vol. 18, no. 3 (1995), 463-468.
- [2] Y. Komatu, Distorsion theorems in relation to linear integral transforms, Kluwer Academic Publishers, Dordrecht, Boston and London, 1996.
- [3] S.S. Miller, P.T. Mocanu, *Differential subordinations. Theory and applications*, Marcel Dekker Inc. New York, Basel, 2000.
- [4] P.T. Mocanu, T. Bulboacă, Gr. Şt. Sălăgean, The geometric theory of univalent functions, Casa Cărții de Știință, Cluj-Napoca, 2006 (in Romanian).
- [5] Gr. Şt. Sălăgean, Subclasses of univalent functions, Lectures Notes in Math., 1013, 362-372, Springer-Verlag, Heideberg, 1983.
- [6] S. Shams, S.R. Kulkarni, J.M. Jahangiri, Subordination properties of p-valent functions defined by integral operators, Int. J. Math. Math. Sci., Article ID 94572 (2006), 1-3.
- [7] A. Totoi, On integral operators for meromorphic functions, General Mathematics, Vol. 18, No. 3 (2010), 91-108.
- [8] B.A. Uralegaddi, C. Somanatha, Certain differential operators for meromorphic functions, Houston J. Math., 17 (1991), 279-284.

Alina Totoi Department of Mathematics "Lucian Blaga" University of Sibiu Str. I. Raţiu, no. 5-7, Sibiu, România email:totoialina@yahoo.com