# CERTAIN DIFFERENTIAL SUPERORDINATIONS USING A GENERALIZED SĂLĂGEAN AND RUSCHEWEYH OPERATORS

## Alb Lupaş Alina

ABSTRACT. In the present paper we define a new operator using the generalized Sălăgean and Ruscheweyh operators. Denote by  $DR_{\lambda}^{m}$  the Hadamard product of the generalized Sălăgean operator  $D_{\lambda}^{m}$  and the Ruscheweyh operator  $R^{m}$ , given by  $DR_{\lambda}^{m}: \mathcal{A} \to \mathcal{A}, \ DR_{\lambda}^{m}f(z) = (D_{\lambda}^{m}*R^{m}) f(z)$  and  $\mathcal{A}_{n} = \{f \in \mathcal{H}(U), \ f(z) = z + a_{n+1}z^{n+1} + \dots, \ z \in U\}$  is the class of normalized analytic functions with  $\mathcal{A}_{1} = \mathcal{A}$ . We study some differential superordinations regarding the operator  $DR_{\lambda}^{m}$ .

2000 Mathematics Subject Classification: 30C45, 30A20, 34A40.

Keywords: Differential superordination, convex function, best subordinant, differential operator.

### 1. Introduction and definitions

Denote by U the unit disc of the complex plane  $U = \{z \in \mathbb{C} : |z| < 1\}$  and  $\mathcal{H}(U)$  the space of holomorphic functions in U.

Let

$$A_n = \{ f \in \mathcal{H}(U), \ f(z) = z + a_{n+1}z^{n+1} + \dots, \ z \in U \}$$

with  $A_1 = A$  and

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H}(U), \ f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots, \ z \in U \}$$

for  $a \in \mathbb{C}$  and  $n \in \mathbb{N}$ .

If f and g are analytic functions in U, we say that f is superordinate to g, written  $g \prec f$ , if there is a function w analytic in U, with w(0) = 0, |w(z)| < 1, for all  $z \in U$  such that g(z) = f(w(z)) for all  $z \in U$ . If f is univalent, then  $g \prec f$  if and only if f(0) = g(0) and  $g(U) \subseteq f(U)$ .

Let  $\psi: \mathbb{C}^2 \times U \to \mathbb{C}$  and h analytic in U. If p and  $\psi(p(z), zp'(z); z)$  are univalent in U and satisfies the (first-order) differential superordination

$$h(z) \prec \psi(p(z), zp'(z); z), \quad \text{for } z \in U,$$
 (1)

then p is called a solution of the differential superordination. The analytic function q is called a subordinant of the solutions of the differential superordination, or more simply a subordinant, if  $q \prec p$  for all p satisfying (1). An univalent subordinant  $\widetilde{q}$  that satisfies  $q \prec \widetilde{q}$  for all subordinants q of (1) is said to be the best subordinant of (1). The best subordinant is unique up to a rotation of U.

**Definition 1** (Al Oboudi [4]) For  $f \in \mathcal{A}$ ,  $\lambda \geq 0$  and  $m \in \mathbb{N}$ , the operator  $D_{\lambda}^{m}$  is defined by  $D_{\lambda}^{m} : \mathcal{A} \to \mathcal{A}$ ,

$$D_{\lambda}^{0}f(z) = f(z)$$

$$D_{\lambda}^{1}f(z) = (1 - \lambda) f(z) + \lambda z f'(z) = D_{\lambda}f(z)$$
...
$$D_{\lambda}^{m}f(z) = (1 - \lambda) D_{\lambda}^{m-1}f(z) + \lambda z (D_{\lambda}^{m}f(z))' = D_{\lambda} (D_{\lambda}^{m-1}f(z)), \text{ for } z \in U.$$

**Remark 1** If  $f \in \mathcal{A}$  and  $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$ , then  $D_{\lambda}^m f(z) = z + \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^m a_j z^j$ , for  $z \in U$ .

**Remark 2** For  $\lambda = 1$  in the above definition we obtain the Sălăgean differential operator [7].

**Definition 2** (Ruscheweyh [6]) For  $f \in \mathcal{A}$ ,  $m \in \mathbb{N}$ , the operator  $R^m$  is defined by  $R^m : \mathcal{A} \to \mathcal{A}$ ,

$$\begin{split} R^{0}f\left(z\right) &= f\left(z\right) \\ R^{1}f\left(z\right) &= zf'\left(z\right) \\ & \dots \\ \left(m+1\right)R^{m+1}f\left(z\right) &= z\left(R^{m}f\left(z\right)\right)' + mR^{m}f\left(z\right), \quad z \in U. \end{split}$$

**Remark 3** If  $f \in \mathcal{A}$ ,  $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$ , then  $R^m f(z) = z + \sum_{j=2}^{\infty} C_{m+j-1}^m a_j z^j$ ,  $z \in U$ .

**Definition 3** ([5]) We denote by Q the set of functions that are analytic and injective on  $\overline{U}\backslash E(f)$ , where  $E(f)=\{\zeta\in\partial U: \lim_{z\to\zeta}f(z)=\infty\}$ , and  $f'(\zeta)\neq 0$  for  $\zeta\in\partial U\backslash E(f)$ . The subclass of Q for which f(0)=a is denoted by Q(a). We will use the following lemmas.

**Lemma 1** (Miller and Mocanu [5]) Let h be a convex function with h(0) = a, and let  $\gamma \in \mathbb{C} \setminus \{0\}$  be a complex number with  $Re \ \gamma \geq 0$ . If  $p \in \mathcal{H}[a,n] \cap Q$ ,  $p(z) + \frac{1}{\gamma} z p'(z)$  is univalent in U and

$$h(z) \prec p(z) + \frac{1}{\gamma} z p'(z), \quad for \ z \in U,$$

$$q(z) \prec p(z), \quad for \ z \in U,$$

where  $q(z) = \frac{\gamma}{nz^{\gamma/n}} \int_0^z h(t)t^{\gamma/n-1}dt$ , for  $z \in U$ . The function q is convex and is the best subordinant

**Lemma 2** (Miller and Mocanu [5]) Let q be a convex function in U and let h(z) = $q(z) + \frac{1}{\gamma}zq'(z)$ , for  $z \in U$ , where  $Re \ \gamma \ge 0$ .

If  $p \in \mathcal{H}[a,n] \cap Q$ ,  $p(z) + \frac{1}{2}zp'(z)$  is univalent in U and

$$q(z) + \frac{1}{\gamma}zq'(z) \prec p(z) + \frac{1}{\gamma}zp'(z), \quad for \ z \in U,$$

then

$$q(z) \prec p(z), \quad for \ z \in U,$$

where  $q(z) = \frac{\gamma}{nz^{\gamma/n}} \int_0^z h(t)t^{\gamma/n-1}dt$ , for  $z \in U$ . The function q is the best subordinant.

### 2. Main results

**Definition 4** ([2]) Let  $\lambda \geq 0$  and  $m \in \mathbb{N}$ . Denote by  $DR_{\lambda}^m$  the operator given by the Hadamard product (the convolution product) of the generalized Sălăgean operator  $D_{\lambda}^{m}$  and the Ruscheweyh operator  $R^{m}$ ,  $DR_{\lambda}^{m}: \mathcal{A} \to \mathcal{A}$ ,

$$DR_{\lambda}^{m} f(z) = (D_{\lambda}^{m} * R^{m}) f(z).$$

**Remark 4** If  $f \in \mathcal{A}$  and  $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$ , then  $DR_{\lambda}^m f(z) = z + \sum_{j=2}^{\infty} C_{m+j-1}^m \left[1 + (j-1)\lambda\right]^m a_j^2 z^j$ , for  $z \in U$ . **Remark 5** For  $\lambda = 1$  we obtain the Hadamard product  $SR^n$  [1] of the Sălăgean operator  $S^n$  and Ruscheweyh operator  $R^n$ .

**Theorem 1** Let h be a convex function, h(0) = 1. Let  $\lambda \geq 0$ ,  $m \in \mathbb{N}$ ,  $f \in \mathcal{A}$  and suppose that  $\frac{m+1}{(m\lambda+1)z}DR_{\lambda}^{m+1}f(z) - \frac{m(1-\lambda)}{(m\lambda+1)z}DR_{\lambda}^{m}f(z)$  is univalent and  $(DR_{\lambda}^{m}f(z))' \in$  $\mathcal{H}[1,1] \cap Q$ . If

$$h(z) \prec \frac{m+1}{(m\lambda+1)z} DR_{\lambda}^{m+1} f(z) - \frac{m(1-\lambda)}{(m\lambda+1)z} DR_{\lambda}^{m} f(z), \quad \text{for } z \in U, \quad (2)$$

then

$$q(z) \prec (DR_{\lambda}^m f(z))', \quad \text{for } z \in U,$$

where  $q(z) = \frac{m + \frac{1}{\lambda}}{z^{m + \frac{1}{\lambda}}} \int_0^z h(t) t^{m-1 + \frac{1}{\lambda}} dt$ . The function q is convex and it is the best subordinant.

*Proof.* With notation  $p(z) = (DR_{\lambda}^{m} f(z))' = 1 + \sum_{i=2}^{\infty} C_{m+i-1}^{m} [1 + (j-1)\lambda]^{m}$ .

 $ja_j^2z^{j-1}$  and p(0)=1, we obtain for  $f(z)=z+\sum_{j=2}^{\infty}a_jz^j$ ,

$$\begin{split} p\left(z\right) + zp'\left(z\right) &= \tfrac{m+1}{\lambda z} DR_{\lambda}^{m+1} f\left(z\right) - \left(m-1+\tfrac{1}{\lambda}\right) \left(DR_{\lambda}^{m} f\left(z\right)\right)' - \tfrac{m(1-\lambda)}{\lambda z} DR_{\lambda}^{m} f\left(z\right) \\ \text{and} \ p\left(z\right) &+ \tfrac{\lambda}{m\lambda + 1} zp'\left(z\right) = \tfrac{m+1}{(m\lambda + 1)z} DR_{\lambda}^{m+1} f\left(z\right) - \tfrac{m(1-\lambda)}{(m\lambda + 1)z} DR_{\lambda}^{m} f\left(z\right). \\ \text{Evidently} \ p \in \mathcal{H}[1,1]. \end{split}$$

Then (2) becomes

$$h(z) \prec p(z) + \frac{\lambda}{m\lambda + 1} z p'(z)$$
, for  $z \in U$ .

By using Lemma 1 for  $\gamma = m + \frac{1}{\lambda}$  and n = 1, we have

$$q(z) \prec p(z)$$
, for  $z \in U$ , i.e.  $q(z) \prec (DR_{\lambda}^{m} f(z))'$ , for  $z \in U$ ,

where  $q(z) = \frac{m + \frac{1}{\lambda}}{z^{m + \frac{1}{\lambda}}} \int_0^z h(t) t^{m-1 + \frac{1}{\lambda}} dt$ . The function q is convex and it is the best subordinant.

Corollary 1 ([3]) Let h be a convex function, h(0) = 1. Let  $n \in \mathbb{N}$ ,  $f \in \mathcal{A}$  and suppose that  $\frac{1}{z}SR^{n+1}f(z) + \frac{n}{n+1}z(SR^nf(z))''$  is univalent and  $(SR^nf(z))' \in \mathcal{H}[1,1] \cap Q$ . If

$$h(z) \prec \frac{1}{z} S R^{n+1} f(z) + \frac{n}{n+1} z \left( S R^n f(z) \right)'', \quad \text{for } z \in U,$$
 (3)

then

$$q(z) \prec (SR^n f(z))', \quad for \ z \in U,$$

where  $q(z) = \frac{1}{z} \int_0^z h(t)dt$ . The function q is convex and it is the best subordinant. **Theorem 2** Let q be convex in U and let h be defined by  $h(z) = q(z) + \frac{\lambda}{m\lambda + 1}zq'(z)$ ,  $\lambda \geq 0$ ,  $m \in \mathbb{N}$ . If  $f \in \mathcal{A}$ , suppose that  $\frac{m+1}{(m\lambda + 1)z}DR_{\lambda}^{m+1}f(z) - \frac{m(1-\lambda)}{(m\lambda + 1)z}$ .

 $DR_{\lambda}^{m}f\left(z\right)$  is univalent,  $\left(DR_{\lambda}^{m}f\left(z\right)\right)'\in\mathcal{H}\left[1,1\right]\cap Q$  and satisfies the differential superordination

$$h(z) = q(z) + \frac{\lambda}{m\lambda + 1} z q'(z) \prec \frac{m+1}{(m\lambda + 1)z} DR_{\lambda}^{m+1} f(z) - \frac{m(1-\lambda)}{(m\lambda + 1)z} DR_{\lambda}^{m} f(z), \quad (4)$$

for  $z \in U$ , then

$$q(z) \prec \left(DR_{\lambda}^{m} f\left(z\right)\right)', \quad for \ z \in U,$$

where  $q(z) = \frac{m + \frac{1}{\lambda}}{z^{m + \frac{1}{\lambda}}} \int_0^z h\left(t\right) t^{m - 1 + \frac{1}{\lambda}} dt$ . The function q is the best subordinant.

*Proof.* Let 
$$p(z) = (DR_{\lambda}^m f(z))' = 1 + \sum_{j=2}^{\infty} C_{m+j-1}^m [1 + (j-1)\lambda]^m j a_j^2 z^{j-1}$$
.

Differentiating, we obtain 
$$p\left(z\right) + zp'\left(z\right) = \frac{m+1}{\lambda z}DR_{\lambda}^{m+1}f\left(z\right) - \left(m-1+\frac{1}{\lambda}\right)\cdot \left(DR_{\lambda}^{m}f\left(z\right)\right)' - \frac{m(1-\lambda)}{\lambda z}DR_{\lambda}^{n}f\left(z\right) \text{ and } p\left(z\right) + \frac{\lambda}{m\lambda+1}zp'\left(z\right) = \frac{m+1}{(m\lambda+1)z}DR_{\lambda}^{m+1}f\left(z\right) - \frac{m+1}{m\lambda+1}zp'\left(z\right) = \frac{m+1}{m\lambda+1}zp'\left$$

 $\frac{m(1-\lambda)}{(m\lambda+1)z}DR_{\lambda}^{m}f\left(z\right),$  for  $z\in U$  and (4) becomes

$$q(z) + \frac{\lambda}{m\lambda + 1} z q'(z) \prec p(z) + \frac{\lambda}{m\lambda + 1} z p'(z), \text{ for } z \in U.$$

Using Lemma 2 for  $\gamma = m + \frac{1}{\lambda}$  and n = 1, we have

$$q(z) \prec p(z), \text{ for } z \in U, \text{ i.e. } q(z) = \frac{m + \frac{1}{\lambda}}{z^{m + \frac{1}{\lambda}}} \int_{0}^{z} h\left(t\right) t^{m - 1 + \frac{1}{\lambda}} dt \prec \left(DR_{\lambda}^{m} f\left(z\right)\right)',$$

for  $z \in U$ , and q is the best subordinant.

**Corollary 2** ([3]) Let q be convex in U and let h be defined by h(z) = q(z) + zq'(z). If  $n \in \mathbb{N}$ ,  $f \in \mathcal{A}$ , suppose that  $\frac{1}{z}SR^{n+1}f(z) + \frac{n}{n+1}z(SR^nf(z))''$  is univalent,  $(SR^nf(z))' \in \mathcal{H}[1,1] \cap Q$  and satisfies the differential superordination

$$h(z) = q(z) + zq'(z) \prec \frac{1}{z}SR^{n+1}f(z) + \frac{n}{n+1}z(SR^nf(z))'', \text{ for } z \in U,$$
 (5)

then

$$q(z) \prec (SR^n f(z))', \quad for \ z \in U,$$

where  $q(z) = \frac{1}{z} \int_0^z h(t) dt$ . The function q is the best subordinant.

**Theorem 3** Let h be a convex function, h(0) = 1. Let  $\lambda \geq 0$ ,  $m \in \mathbb{N}$ ,  $f \in \mathcal{A}$  and suppose that  $(DR_{\lambda}^m f(z))'$  is univalent and  $\frac{DR_{\lambda}^m f(z)}{z} \in \mathcal{H}[1,1] \cap Q$ . If

$$h(z) \prec (DR_{\lambda}^{m} f(z))', \quad \text{for } z \in U,$$
 (6)

then

$$q(z) \prec \frac{DR_{\lambda}^{m} f(z)}{z}, \quad for \ z \in U,$$

where  $q(z) = \frac{1}{z} \int_0^z h(t)dt$ . The function q is convex and it is the best subordinant.

*Proof.* Consider 
$$p(z) = \frac{DR_{\lambda}^{m} f(z)}{z} = \frac{z + \sum_{j=2}^{\infty} C_{m+j-1}^{m} [1 + (j-1)\lambda]^{m} a_{j}^{2} z^{j}}{z} = \frac{z + \sum_{j=2}^{\infty} C_{m+j-1}^{m} [1 + (j-1)\lambda]^{m} a_{j}^{2} z^{j}}{z}$$

 $1 + \sum_{j=2}^{\infty} C_{m+j-1}^m \left[ 1 + (j-1) \lambda \right]^m a_j^2 z^{j-1}$ . Evidently  $p \in \mathcal{H}[1,1]$ .

We have  $p(z) + zp'(z) = (DR_{\lambda}^m f(z))'$ , for  $z \in U$ .

Then (6) becomes

$$h(z) \prec p(z) + zp'(z)$$
, for  $z \in U$ .

By using Lemma 1 for  $\gamma = 1$  and n = 1, we have

$$q(z) \prec p(z)$$
, for  $z \in U$ , i.e.  $q(z) \prec \frac{DR_{\lambda}^{m} f(z)}{z}$ , for  $z \in U$ ,

where  $q(z) = \frac{1}{z} \int_0^z h(t) dt$ . The function q is convex and it is the best subordinant. Corollary 3 ([3]) Let h be a convex function, h(0) = 1. Let  $n \in \mathbb{N}$ ,  $f \in \mathcal{A}$  and suppose that  $(SR^n f(z))'$  is univalent and  $\frac{SR^n f(z)}{z} \in \mathcal{H}[1,1] \cap Q$ . If

$$h(z) \prec (SR^n f(z))', \quad \text{for } z \in U,$$
 (7)

then

$$q(z) \prec \frac{SR^{n}f(z)}{z}, \quad \text{ for } z \in U,$$

where  $q(z) = \frac{1}{z} \int_0^z h(t)dt$ . The function q is convex and it is the best subordinant. **Theorem 4** Let q be convex in U and let h be defined by h(z) = q(z) + zq'(z). If  $\lambda \geq 0$ ,  $m \in \mathbb{N}$ ,  $f \in \mathcal{A}$ , suppose that  $(DR_{\lambda}^m f(z))'$  is univalent,  $\frac{DR_{\lambda}^m f(z)}{z} \in \mathcal{H}[1,1] \cap Q$ and satisfies the differential superordination

$$h(z) = q(z) + zq'(z) \prec (DR_{\lambda}^{m} f(z))', \quad for \ z \in U,$$
(8)

then

$$q(z) \prec \frac{DR_{\lambda}^{m} f(z)}{z}, \quad for \ z \in U,$$

where 
$$q(z) = \frac{1}{z} \int_0^z h(t) dt$$
. The function  $q$  is the best subordinant. Proof. Let  $p(z) = \frac{DR_\lambda^m f(z)}{z} = \frac{z + \sum_{j=2}^\infty C_{m+j-1}^m [1 + (j-1)\lambda]^m a_j^2 z^j}{z} = \frac{z + \sum_{j=1}^\infty C_{m+j-1}^m [1 + (j-1)\lambda]^m a_j^2 z^j}{z}$ 

$$1 + \sum_{j=2}^{\infty} C_{m+j-1}^m \left[ 1 + (j-1) \lambda \right]^m a_j^2 z^{j-1}$$
. Evidently  $p \in \mathcal{H}[1,1]$ .

Differentiating, we obtain  $p(z) + zp'(z) = (DR_{\lambda}^m f(z))'$ , for  $z \in U$  and (8) becomes

$$q(z) + zq'(z) \prec p(z) + zp'(z)$$
, for  $z \in U$ .

Using Lemma 2 for  $\gamma = 1$  and n = 1, we have

$$q(z) \prec p(z)$$
, for  $z \in U$ , i.e.  $q(z) = \frac{1}{z} \int_0^z h(t) dt \prec \frac{DR_{\lambda}^m f(z)}{z}$ , for  $z \in U$ ,

and q is the best subordinant.

Corollary 4 ([3]) Let q be convex in U and let h be defined by h(z) = q(z) + zq'(z). If  $n \in \mathbb{N}$ ,  $f \in \mathcal{A}$ , suppose that  $(SR^n f(z))'$  is univalent,  $\frac{SR^n f(z)}{z} \in \mathcal{H}[1,1] \cap Q$  and satisfies the differential superordination

$$h(z) = q(z) + zq'(z) \prec (SR^n f(z))', \quad for \ z \in U,$$
(9)

$$q(z) \prec \frac{SR^n f(z)}{z}, \quad for \ z \in U,$$

where  $q(z) = \frac{1}{z} \int_0^z h(t) dt$ . The function q is the best subordinant. **Theorem 5** Let  $h(z) = \frac{1+(2\beta-1)z}{1+z}$  be a convex function in U, where  $0 \le \beta < 1$ . Let  $\lambda \geq 0$ ,  $m \in \mathbb{N}$ ,  $f \in \mathcal{A}$  and suppose that  $(DR_{\lambda}^{m} f(z))'$  is univalent and  $\frac{DR_{\lambda}^{m} f(z)}{z} \in \mathcal{A}$  $\mathcal{H}[1,1] \cap Q$ . If

$$h(z) \prec (DR_{\lambda}^{m} f(z))', \quad \text{for } z \in U,$$
 (10)

then

$$q(z) \prec \frac{DR_{\lambda}^{m}f\left(z\right)}{z}, \quad \textit{ for } \ z \in U,$$

where q is given by  $q(z) = 2\beta - 1 + 2(1-\beta)\frac{\ln(1+z)}{z}$ , for  $z \in U$ . The function q is convex and it is the best subordinant.

Following the same steps as in the proof of Theorem and considering

 $p(z) = \frac{DR_{\lambda}^m f(z)}{z}$ , the differential superordination (10) becomes

$$h(z) = \frac{1 + (2\beta - 1)z}{1 + z} \prec p(z) + zp'(z), \text{ for } z \in U.$$

By using Lemma 1 for  $\gamma = 1$  and n = 1, we have  $q(z) \prec p(z)$ , i.e.,

$$q(z) = \frac{1}{z} \int_0^z h(t)dt = \frac{1}{z} \int_0^z \frac{1 + (2\beta - 1)t}{1 + t}dt = 2\beta - 1 + 2(1 - \beta)\frac{1}{z}\ln(z + 1) \prec \frac{DR_\lambda^m f(z)}{z},$$

for  $z \in U$ .

The function q is convex and it is the best subordinant.

**Theorem 6** Let h be a convex function, h(0) = 1. Let  $\lambda \geq 0$ ,  $m \in \mathbb{N}$ ,  $f \in \mathcal{A}$  and suppose that  $\left(\frac{zDR_{\lambda}^{m+1}f(z)}{DR_{\lambda}^{m}f(z)}\right)'$  is univalent and  $\frac{DR_{\lambda}^{m+1}f(z)}{DR_{\lambda}^{m}f(z)} \in \mathcal{H}[1,1] \cap Q$ . If

$$h(z) \prec \left(\frac{zDR_{\lambda}^{m+1}f(z)}{DR_{\lambda}^{m}f(z)}\right)', \quad for \ z \in U,$$
 (11)

$$q(z) \prec \frac{DR_{\lambda}^{m+1}f(z)}{DR_{\lambda}^{m}f(z)}, \quad for \ z \in U,$$

$$\begin{array}{l} \textit{where } q(z) = \frac{1}{z} \int_{0}^{z} h(t) dt. \ \textit{The function } q \ \textit{is convex and it is the best subordinant.} \\ \textit{Proof.} \ \ \text{Consider } p(z) = \frac{DR_{\lambda}^{m+1} f(z)}{DR_{\lambda}^{m} f(z)} = \frac{z + \sum_{j=2}^{\infty} C_{m+j}^{m+1} [1 + (j-1)\lambda]^{m+1} a_{j}^{2} z^{j}}{z + \sum_{j=2}^{\infty} C_{m+j-1}^{m} [1 + (j-1)\lambda]^{m} a_{j}^{2} z^{j}} = \\ \end{array}$$

$$\frac{1+\sum_{j=2}^{\infty}C_{m+j}^{m+1}[1+(j-1)\lambda]^{m+1}a_{j}^{2}z^{j-1}}{1+\sum_{j=2}^{\infty}C_{m+j-1}^{m}[1+(j-1)\lambda]^{m}a_{j}^{2}z^{j-1}}. \text{ Evidently } p \in \mathcal{H}[1,1].$$

We have 
$$p'\left(z\right) = \frac{\left(DR_{\lambda}^{m+1}f(z)\right)'}{DR_{\lambda}^{m}f(z)} - p\left(z\right) \cdot \frac{\left(DR_{\lambda}^{m}f(z)\right)'}{DR_{\lambda}^{m}f(z)}.$$
  
Then  $p\left(z\right) + zp'\left(z\right) = \left(\frac{zDR_{\lambda}^{m+1}f(z)}{DR_{\lambda}^{m}f(z)}\right)'.$ 
Then (11) becomes

$$h(z) \prec p(z) + zp'(z)$$
, for  $z \in U$ .

By using Lemma 1 for  $\gamma = 1$  and n = 1, we have

$$q(z) \prec p(z)$$
, for  $z \in U$ , i.e.  $q(z) \prec \frac{DR_{\lambda}^{m+1} f(z)}{DR_{\lambda}^{m} f(z)}$ , for  $z \in U$ ,

where  $q(z) = \frac{1}{z} \int_0^z h(t) dt$ . The function q is convex and it is the best subordinant. Corollary 5 ([3]) Let h be a convex function, h(0) = 1. Let  $n \in \mathbb{N}$ ,  $f \in \mathcal{A}$  and suppose that  $\left(\frac{zSR^{n+1}f(z)}{SR^nf(z)}\right)'$  is univalent and  $\frac{SR^{n+1}f(z)}{SR^nf(z)} \in \mathcal{H}[1,1] \cap Q$ . If

$$h(z) \prec \left(\frac{zSR^{n+1}f(z)}{SR^nf(z)}\right)', \quad for \ z \in U,$$
 (12)

then

$$q(z) \prec \frac{SR^{n+1}f(z)}{SR^nf(z)}, \quad for \ z \in U,$$

where  $q(z) = \frac{1}{z} \int_0^z h(t) dt$ . The function q is convex and it is the best subordinant. **Theorem 7** Let q be convex in U and let h be defined by h(z) = q(z) + zq'(z). If  $\lambda \geq 0$ ,  $m \in \mathbb{N}$ ,  $f \in \mathcal{A}$ , suppose that  $\left(\frac{zDR_{\lambda}^{m+1}f(z)}{DR_{\lambda}^{m}f(z)}\right)'$  is univalent,  $\frac{DR_{\lambda}^{m+1}f(z)}{DR_{\lambda}^{m}f(z)} \in$  $\mathcal{H}[1,1] \cap Q$  and satisfies the differential superordinat

$$h(z) = q(z) + zq'(z) \prec \left(\frac{zDR_{\lambda}^{m+1}f(z)}{DR_{\lambda}^{m}f(z)}\right)', \quad \text{for } z \in U,$$
(13)

$$q(z) \prec \frac{DR_{\lambda}^{m+1}f\left(z\right)}{DR_{\lambda}^{m}f\left(z\right)}, \quad for \ \ z \in U,$$

$$\begin{array}{c} \textit{where } q(z) = \frac{1}{z} \int_{0}^{z} h(t) dt. \ \textit{The function } q \ \textit{is the best subordinant.} \\ \textit{Proof.} \ \ \text{Let } p(z) = \frac{DR_{\lambda}^{m+1} f(z)}{DR_{\lambda}^{m} f(z)} = \frac{z + \sum_{j=2}^{\infty} C_{m+j}^{m+1} [1 + (j-1)\lambda]^{m+1} a_{j}^{2} z^{j}}{z + \sum_{j=2}^{\infty} C_{m+j-1}^{m} [1 + (j-1)\lambda]^{m} a_{j}^{2} z^{j}} = \\ \end{array}$$

$$\frac{1+\sum_{j=2}^{\infty}C_{m+j}^{m+1}[1+(j-1)\lambda]^{m+1}a_{j}^{2}z^{j-1}}{1+\sum_{j=2}^{\infty}C_{m+j-1}^{m+j}[1+(j-1)\lambda]^{m}a_{j}^{2}z^{j-1}}. \text{ Evidently } p \in \mathcal{H}[1,1].$$

Differentiating, we obtain  $p(z) + zp'(z) = \left(\frac{zDR_{\lambda}^{m+1}f(z)}{DR_{\lambda}^{m}f(z)}\right)'$ , for  $z \in U$  and (13) becomes

$$q(z) + zq'(z) \prec p(z) + zp'(z)$$
, for  $z \in U$ .

Using Lemma 2 for  $\gamma = 1$  and n = 1, we have

$$q(z) \prec p(z)$$
, for  $z \in U$ , i.e.  $q(z) = \frac{1}{z} \int_0^z h(t) dt \prec \frac{DR_{\lambda}^{m+1} f(z)}{DR_{\lambda}^m f(z)}$ , for  $z \in U$ ,

and q is the best subordinant.

**Corollary 6** ([3]) Let q be convex in U and let h be defined by h(z) = q(z) + zq'(z). If  $n \in \mathbb{N}$ ,  $f \in \mathcal{A}$ , suppose that  $\left(\frac{zSR^{n+1}f(z)}{SR^nf(z)}\right)'$  is univalent,  $\frac{SR^{n+1}f(z)}{SR^nf(z)} \in \mathcal{H}[1,1] \cap Q$  and satisfies the differential superordination

$$h(z) = q(z) + zq'(z) \prec \left(\frac{zSR^{n+1}f(z)}{SR^nf(z)}\right)', \quad for \ z \in U,$$
(14)

then

$$q(z) \prec \frac{SR^{n+1}f(z)}{SR^nf(z)}, \quad for \ z \in U,$$

where  $q(z) = \frac{1}{z} \int_0^z h(t) dt$ . The function q is the best subordinant. **Theorem 8** Let  $h(z) = \frac{1+(2\beta-1)z}{1+z}$  be a convex function in U, where  $0 \le \beta < 1$ . Let  $\lambda \ge 0$ ,  $m \in \mathbb{N}$ ,  $f \in \mathcal{A}$  and suppose that  $\left(\frac{zDR_{\lambda}^{m+1}f(z)}{DR_{\lambda}^{m}f(z)}\right)'$  is univalent,  $\frac{DR_{\lambda}^{m+1}f(z)}{DR_{\lambda}^{m}f(z)} \in \mathbb{N}$  $\mathcal{H}[1,1] \cap Q$ . If

$$h(z) \prec \left(\frac{zDR_{\lambda}^{m+1}f(z)}{DR_{\lambda}^{m}f(z)}\right)', \quad for \ z \in U,$$
 (15)

then

$$q(z) \prec \frac{DR_{\lambda}^{m+1} f(z)}{DR_{\lambda}^{m} f(z)}, \quad for \ z \in U,$$

where q is given by  $q(z) = 2\beta - 1 + 2(1-\beta)\frac{\ln(1+z)}{z}$ , for  $z \in U$ . The function q is convex and it is the best subordinant.

Following the same steps as in the proof of Theorem and considering

 $p(z) = \frac{DR_n^{m+1}f(z)}{DR_n^mf(z)}$ , the differential superordination (15) becomes

$$h(z) = \frac{1 + (2\beta - 1)z}{1 + z} \prec p(z) + zp'(z), \text{ for } z \in U.$$

By using Lemma 1 for  $\gamma = 1$  and n = 1, we have  $q(z) \prec p(z)$ , i.e.,

$$q(z) = \frac{1}{z} \int_0^z h(t) dt = \frac{1}{z} \int_0^z \frac{1 + (2\beta - 1)t}{1 + t} dt = 2\beta - 1 + 2(1 - \beta) \frac{1}{z} \ln(z + 1) \prec \frac{DR_{\lambda}^{m+1} f(z)}{DR_{\lambda}^m f(z)},$$

for  $z \in U$ .

The function q is convex and it is the best subordinant.

#### References

- [1] Alina Alb Lupaş, Adriana Cătaş, Certain differential subordinations using Sălăgean and Ruscheweyh operators, Proceedings of International Conference on Complex Analysis and Related Topics, The 11th Romanian-Finish Seminar, Alba Iulia, 2008, (to appear).
- [2] Alina Alb Lupaş, Certain differential subordinations using a generalized Sălăgean operator and Ruscheweyh operator, submitted 2009.
- [3] Alina Alb Lupaş, Certain differential superordinations using Sălăgean and Ruscheweyh operators, Analele Universității din Oradea, Fascicola Matematica, Tom XVII, Issue no. 2, 2010, 201-208.
- [4] F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Ind. J. Math. Math. Sci., 2004, no.25-28, 1429-1436.
- [5] S.S. Miller, P.T. Mocanu, Subordinants of Differential Superordinations, Complex Variables, vol. 48, no. 10, 2003, 815-826.
- [6] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
- [7] G.St. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, **1013** (1983), 362-372.

Alb Lupaş Alina Department of Mathematics University of Oradea

str. Universității nr. 1, 410087, Oradea, Romania

email: dalb@uoradea.ro