Acta Universitatis Apulensis No. 24/2010
ISSN: 1582-5329 pp. 131-160

STABILITY OF QUEUEING NETWORK SYSTEM WITH TWO
STATIONS AND N CLASSES

Faiza BELARBI AND AMINA ANGELIKA BOUCHENTOUF

ABSTRACT. In this paper we study the ergodicity of the queueing network system
with two stations and N classes ” N is a multiple of 4” with (% — 1) feedbacks at
the first station and % feedbacks at the second one under the FIFO policy and the

N N-3 N—2 N-1

usual conditions p; = m; + Z my, + Z my, <1 and py = Z my, + Z my, < 1.
l1=4 la=5 I5=2 l4=3

By using the fluid model criterion presented by Rybko, Stolyar and Dai, we show

that if p; < p2 then the fluid model is stable and the stochastic queueing network

system is ergodic.

2000 Mathematics Subject Classification: 60K25, 68M20, 90B22.

1. INTRODUCTION

Our network is composed of two queues (i = 1,2). At each queue there is one server
and a waiting room of infinite capacity. Customers follow a route fixed by the
network . They arrive from outside at rate 1, they will make the queue 1 where they
need a service of mean mq, then they align the second queue where they need at
first a service of mean ms, and then they test a feedback at this queue requiring a
service of mean mg, then they return to the first queue where they need a service of
mean m4 and then they test a feedback at this queue requiring a service of mean ms,
after that they will align the queue 2 where they ask once again a service of mean
mg, the customers continue their ask for services until they return definitively to
the first queue where they ask for the last time for a service of mean my, and they
leave the network. Consequently we have N classes of customers. The discipline is
FIFO in the two queues.
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Network with two stations and N classes

The necessary conditions of stability are

N N-3 N-2 N-1
p1:m1+2m11+2ml2<1 andp2:Zml3+Zml4<1. (1)
=4 l2=5 l3=2 14=3

with {; multiple of 4, ls an odd number such that the difference between the Iy
equalizes to 4, I3 an odd number such that the difference between the I3 equalizes
to 4, l4 is an odd number, the difference between the 4 also equalizes to 4.

2.FLUID MODEL

General presentations
For each integer n > 1, 7(n) is the time of the inter-arrival between the arrival of
the (n—1)th customer and that of the nth customer from outside; the first customer
arrives at time 7(1).
The times of services for the nth customer in the various classes are o1(n), ....,on(n) :
We make the following assumptions on the network. At first, we have:

{(r(n),o1(n),...,on(n)),n > 1} is an i.i.d sequence. (2)

Next, we put some moment assumptions on interarrival and service times,
we assume that

E[r(1)] < 0o and E[o(1)] = my < oo, for k=1,...,N. (3)
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Finally, we suppose that interarrival times are unbounded and spread out, i.e.
Ve >0, P[r(1) >z] > 0. (4)

We also suppose for some integer n > 0 and some function p(x) > 0 on Ry with
Iy p(z)dz >0,

n b
Pla < ZT(j) < b > / p(x)dx, for any 0 <a <b. (5)
=1 a
Without loss of general information, we suppose that E[r(1)] = 1. For ¢ = 1,2,

N N-3
the workload for server ¢ per unit of time is py = m; + Z my, + Z my, and
l1=4

la=5
N-2 N-1
po = Z my, + Z my, < 1. In all this work, we suppose that conditions (1) are
I3=2 14=3

satisfied. We suppose that the service policy in the two stations is FIFO.

In Dai [3] or Dumas [4], authors have presented a stochastic process {X(¢),t > 0}
which describe the dynamic of the queueing network system.

For each t > 0, X(t) = (X1(¢), X2(t)) where X;(t) is the state at the station i at
time t.

Since the policy utilized is FIFO we need to take

Xi(t) = (Ci(i, 1), ..., Co(i, Ni()), u(t), vi(t)) (6)

where N;(t) is the number of customers at the queue 7 at time ¢t > 0 and Cy(i,1) is
the class of I customer at the queue i at time t.

Here, u(t) is the residual time for the next customer who arrives from outside and
v;(t) is the residual service time of the customer being maintained at station i at
time t (by convention, if N;(t) = 0,v;(¢) = 0). In the presentations (2) and (3), the
process (X¢)i>0 is a piecewise deterministic Markov process, see Dai [3]. As usual
we identify the stability of our network by the Harris positive recurrence of (X;)>o.
We will use the concept of limit fluid presented by Rybko and Stolyar [5] and Dai
[3]. In this effect we need some notations.

Definition 1 For a given initial state x, and a given class k at the queue i,
Qr(x,t) is the number of customers of class k at time t.

Ag(x,t) is the number of arrivals from class k until time t. (by convention Q(z,0) =
Dy (x,t) is the number of departures from class k until time t (with Dy(x,0) = 0.)
Tk (x,t) is the spent time by the server o(k) to serve the customers of class k until

133



F. Belarbi, A. A. Bouchentouf - Stability of queueing network system with...

time t.
Zi(x,t) is the immediate workload at the queue i at time t.

All these processes are taken continuous. We define the corresponding processes
of vectors Q, A, D and T which are of dimension N and Z = (Z1, Z3).

3.FLUID LIMIT AND THE FLUID MODEL

If x is the state of the network, we note by |z| the total number of customers
in the system in the state x. For each sequence of states (z,)n>0 with |z,| > 0, Vn,
and for any process (H(zn,t))i>0, we define H by

Vt >0 ﬁn —_ H(xm |xn|t)

Theorem 1 (Dai) Let (x,,) an initial sequence of states with |x,| — 400, then
there exists a subsequence (x4(n)) such that (@d)(n),Z¢(n)7ﬁ¢(n)77¢(n)77¢(n)) con-
verges in distribution to the limit (Q,A,D,T,Z). This limit satisfied the following
equations:

Qk(t) = Qk(O) + ,uk_lTk_l(t) — ,uka(t) for k= 1, ..N (7)

with p, = m%c for k=1,...N, pop=1 and To(t)=t for t>0

Qr(t) >0 for k=1,...N (8)
Dy(t)(t) = pTi(t) for k=1,...N (9)
Tx(0) =0 and Tk(.) is nondecreasing for k=1,....N (10)

N N-3
Bi(t) =Ta(t) + Y Ti, (8) + Y Tiy(2).
l1=4

lo—
N2 v T (11)
Bo(t) = Y Tiy(t) + Y Tu(t).
I13=2 14=3
Yi(t) =t — B;(t) is nondecreasing for i =1,2 (12)
Y;(t) increases only at times t such that Z;(t) =0, i=1,2 (13)
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N N-3
Zy(t) = miQu(t) + Y my, Qi (t) + Y mi,Quy(1).
=4

N—2 N-1 = (14)
Za(t) = > muyQuy () + Y my, Qu,(t).
I3=2 14=3
Du(t + Zi()) = Qu(0) + Ap(t) for k=1,...N, i = o(k) (15)

Definition 2 Any solution to equations (7),...,(15) is called fluid model. Thus any
fluid limit is a fluid model.

For all k = 1,...,N, the functions t — Ty(t) and t — t — Ty(t) are nondecreasing
and we have |Ty(t) — Tk(s)| < |t — s| for all s,t > 0, thus there are absolutely
continuous and by fluid equations all functions Qi(.), Bi(.), Yi(.), and Z;(.) are
absolutely continuous.

The condition of work-conserving (13) is used in the the following formula
Si Zi(t) >0 for all t € [a,b], then Y;(a) =Y;(b) (16)
FIFO equation of (15) is also known in the following equivalent form:
Dy (t) = Qr(0) + Ag(7i(t)) for all t >t; = Z;(0), i = o(k), (17)

with 7;(t) is the reverse of the function t — t + Z;(t).

In the stochastic context, 7;(t) is the arrival time of current customer in service at
station i if Z;(t) > 0 and 7(t) =t if Z;(t) =0

In the following proposition, we are going to give the properties of the function 7;(¢),
i=1,2

(For the proof and more details , see Chen et Zhang [2]).

Proposition 1 For i=1,2, we have
e a) Zi(ti(t)) =t —7i(t) for t > Z;(0),

o b) 7i(t) is lipschitz function on [0, 0],

e ¢) 7i(t) is a nondecreasing function and 7;(t) — +oo when t — +o0.
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4.STABILITY RESULT
Theorem 2 In addition to (1), if we have:

p1 < p2, (18)

then any fluid model Q(.) satisfied tlz’T |Q(t)] =0, and thus the network is stable.

Proof. Let Z(t) = Z1(t) + Za(t). Thus we have

lim |Q(t)] :0<:>tli_1Z”L Z(t)=0

t——+o0

We rewrite the workloads at the two stations in a convenient form which enables us
to employ the property of conservation (16).

We use the fluid equations (7), (9), (14) and FIFO equation (17), the workload in
the two stations can be written as follows:

,

Z1(t) = m1[Q1(0) + A1 (8)] + Zmll Q1. (0) + Ay, (1))
=4

+ Z mi, [le (0) + Al2 (t)] -+ Yi(t)
l2=5

N-1
= Z mi, [le (0) + Al3 (t)] + Z miy, [Ql4 (0) + Al4 (t)]

I13=2 14=3
—t + Ya(t).

(19)

All the relations in the continuation can be held for none y > 0 but only for all
t > Ty with Ty a finite time has to be determined by the initial data. And since we
study the behavior of Z(t) when t — oo, we will omit to indicate the constant Tj.
The network is a re-entrant line , thus we have
Ai(t) = t, Aa(t) = Di(t), As(t) = Da(t), Au(t) = Ds(t),....,An—3(t) = Dn-a(?),
An_2o(t) = Dn_3(t), An—1(t) = Dn—2(t), An(t) = Dn_1(t).
FIFO equation(17) gives

A(t) =t (20)
As(t) = Di(t) = Q1(0) + Ar(71(2)) (21)
A3(t) = Da(t) = Q2(0) + Az (72(t)) (22)
Aq(t) = D3(t) = Q3(0) + A3(72(t)) (23)
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An_3(t) = Dn—_4(1)
AN_Q(t) = DN_3(t)
ANn-1(t) = Dn—2(?)

= QN-4(0) + An—a(71(1)) (24)
= Qn-3(0) + An—3(71(t)) (25)
= Qn-2(0) + An—2(72(?)) (26)

+ An-1(72(t)) (27)

By replacing ¢ by 71(¢) in (20), (23), (24

(26) we obtain

Ai(mi(t)) = 1 (t)

Az(72(t)) = Q1(0) + A1 (11 (72(2)))

As(ma(t)) = Qa(0) + Aa (i (1))

Ag(m1(t)) = Q3(0) + Az(72(71(1)))

A s(n (1)) = Qn-a(0) + Ax_+(r2(0)

ANn—2(72(t)) = Qn-3(0) + An—3(T1(72(?)))

An—1(72(t) = Qn-2(0) + An—a(” (1))

An(11(t)) = Qn-1(0) + An—1(72(71(?)))
We recapitulate the above equations. For all t > T' (with T" a finite time)

At) =t

As(t) = Q1(0) + 11(t)

Az(t) = Q1(0) + Q2(0) + 71 (72(t))

As(t) = Q1(0) + Q2(0) + Qs(0) + 1 (77 (1))
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The substitution of A

—~

t) on (19) pays

—

()] = . — mx_slt = ha(t)]
—mn [t — g1(t)] + (pr — 1)t + Yi(2).
Zg(t) = C2 — m2<t — Tl(t) — mg(t — Tl(TQ(t))) — . mN_g[t
—ha(t)] = mn_1[t — h3(t)] + (p2 — 1)t + Ya(2).
where ¢; and co are constants which are not depending on time .
So,

Zl(t) =C —m4[t—7'1(7'

+l\3

~—

Yi(t) = Zo(t) + mat — 7 (rS2 (#)] + .. + my_s[t — ha(£)]
+my[t = gi(t)] — (p1 — 1)t —c1.
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ng(t) = Zg(t) + mz(t — 7'1(15)) + 77’L3(t — Tl(TQ(t))) + ...
+mN72[t - hg(t)] + mel[t - hg(t)] - (p2 - 1)t — C2.

By using the property (a) of the proposition 1 we can rewrite (28) in the follow-
ing form:

(29)

Vi(t) = Z1(0) + malt = 2(t) + (1) = 7 (8) + 77 (2) = ma (737 (0)] +
Fmysft = (1) + (1) = (1) + ma(ra (1) o ha(0)
fmalt = lt) + (8) ~ 00 + 720~ 0) £ ()
207 0) = 70 0) + (137 (0) - e (37 0)

oo —g1(H)] — (o1 — Dt —c1.
Thus,

+.o. + my_3[Z1(11(t)) + Za(m2(T1(
+Z1(h1(t))] + mn|[Za2(12(t)) +Z2(
+ 2y (P (7P (1)) +Zz(72(71 < D
toot Z( PP P EP P 0)
—(p1 — Dt — .
and (29) in the following form

Ya(t) = Za(t) + ma(t — 71(t)) + mat — 72(t) + 72( ) —71(m2(t)] + ...

Hmy_alt = ni(®) + m(t) - 2 + 72 () — (P (1) + m(r P

2w 2 6) + 2 (rP (1)) + . — ha()] + my_1[t — a(t) + 7o

Yi(t) = Z1(8) + malZa(ra(t)) + Zo(7s”
)
2

—T1(Tz(t))+ﬁ(72(t))—71(2)( 20) + 7 (1(8)) — o(r (ra(®)
+1a(r (1 (1)) = T2 (1D (r2(1))) + 787 (17 (7 (£))) + .. — h(

—(pg — 1)t — C2.
So

Ya(t) = Za(t) + maZi(11(t)) + m3[Za(7a(t)) + Z1(T1(12(1)))]

bt a1 (8) + 2o (72 (1)) + Zo(na(r{? (1))

+ Zo(rP B ) + oo+ Zi(ha(8)] + my—1[Zo(ma(t

+Z1(m1(72(t))) + Z1(T1(2)(7'2(t))) + Zo(mo(T (2)( (t)))

+2Z2(ry? (12 (ra(0))) + .+ Za (ha(8))] = (p2 — 1)t -
We will reduce this problem to the study of Z;(t).

0.

Lemma 1 IftliT Z1(t) =0 then ZZT Z(t)
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Proof. Let t a time such that Z3(t) > 0 and a = maz{u < t,Z2(u) = 0}, then
Ya(a) = Ya(t). By using the relation (29) and Z5(t) = 0 we have

Zo(t) + maZi(11(t)) +ma(t — 11(m2(t))) + ... + my—2(t — h2(t))
+my-1(t — h3(t)) — (p2 — 1)t — [Za(a) + m2(a — 11(a))
+mg(a — 1i(72(a))) + ... + my—2(a — ha(a)) + my-1(a — hz(a))
—(p2 —1)a] = 0.

Zs(a) = 0 because a = max{u < t, Zo(u) = 0} and 72(a) = a because Zz(a) =0
thus,

ZQ( ) + ngl(Tl(t)) + mg(t — 7’1(7’2(25))) 4+ ...+ mN_Q(t — hg(t))
+mN_1(t—h3( )) m2Z1(7'1( ) mg(a—n(a))—...
—mn-2(a — ha(a)) — my-1(a — h3(a)) = (p2 = 1)(t — a).

Zg(t) + ngl(ﬁ(t)) + mg[t — 7’1(7’2(t>)] 4+ ...+ mN_Q[t — hg(t)]
—mN,Q[Tl(CL) — hg(a)] + mel[t - hg(t)] - mel[Tl (a)
—hz(a)] — p2Z1(11(a)) = (p2 — 1)(t — a).

where we still have

Zg(t) + ngl(Tl(t)) + mg[t — 7’1(7’2(75))] + ...+ mN,Q[t — hg(t)
+(h2(a) — m1(a)] + my-1[t — h3(t) + (hs(a) — 71(a))] — p2Z1(71(a))
= (p2 = 1)(t — a).
As py < 1, we have
Zg(t) < Zg(t) + 771221<T1(t)) + mg(t — Tl(TQ(t))) + ...+ mN_g[t — hg(t)
+(h2(a) — m1(a))] + my—1[t — h3(t) + (hs(a) — 71(a))]
< paZi(mi(a)),
thus,
Zo(t) < p2 sup  Zi(u). (32)
T2(a)<u<t
Now, to prove the stability, it is enough to prove that . ﬁ;rrnoo Z1(t) = 0.

For any fluid solution Q(.), we associate an increasing sequence of time {¢;}, as in
Bertsimas, Gamarnik and Tsitsiklik [1] which satisfied
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(in (tNm+1;tNm+2) Zl(t) >0 and Zg<t) >0
mn (tNm+2,7me+3) Zl(t) >0 and Zg(t) >0
mn (tNm+37tNm+4) A (t) >0 and Zs (t) >0

(tNm+4atNm+5) Zl(t) >0 and Zg(t) >0
mn (tNm+5;tNm+6) Zl(t) >0 and ZQ(t) >0
n (tNm+67tNm+7) Zl(t) >0 and Zg(t) >0
mn (tNm+77tNm+8) Zl(t) >0 and ZQ(t) >0
mn (tNm+87tNm+9) Zl(t) >0 and Zg(t) >0

N (ENmt(N=3)s ENm+(N—2)) Z1(t) and Z3(t) > 0

N (ENmt(N=2)> ENm+(N=1)) Z1(t) and Z3(t) > 0

in (t Nm(N=1), ENmaN) Z1(t) >0 and Z3(t) > 0

. m (tNm+N7tNm+ N+1) ) (t) >0 andZQ(t) >0

~—

Zy(tNm+2) = Za

—~

and by continuity , Z2(tNm+t1) = tNm+5) = Z2(tNmt6) = ... =
Zo(tNm+(N—3)) = Z2(t Nmy(n—2)) =0

and Z1(tnm+3) = Z1(tNm+a) = Z1(ENmt7) = Z1(tNmys) = - = Z1(ENm(v=1)) =
Z1(tNm4nN) = 0.

The existence of the sequence {¢;} is due to the fact that under necessary conditions
of stability (1), for ¢ = 1,2, the points unit ¢ which Z;(¢) = 0 is not limited.

If there exists 6 > 0 such that Z(t) = 0 for all t > ¢ for any fluid limit Z(.), then

'liT t; < § and the network is stable. Else, there exists a fluid solution such that

1—T00

the associated sequence t; satisfied ‘liin t; = oo and in all the remainder of the
1—>T00

proof, we consider that we are in the second case.

To finish the proof of the theorem 2, we need the following inequalities:

( sup Z1(t) < Z1(m1(tnma2)),

[tNm+2,tNm44]

sup Z1(t) < Zy(m1(tNm+6))s

[tNm+6,tNm48]

sup Z1(t) < Z1 (11 (ENms(v—3)));

[ENm+(N=3)stNm+N]
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sup Z1(t) < ma[Zo(rS2 (twmea)) + Z1(r1 (7 (xvms)))].

[ENm+4,tNm+s]

s A < ms[Za(r3 (12 (152 (tnmes))
+21 (1 (r2 (7P (7 (tvme6)))))]- (34)
éup Z1(t) < my[Za(g2(tNman)) + Z1(g1(ENmanN))]-

[ENm+NAENm+(N+1)]

( sup Z1(t) < ma[Za(78? (tsma)) + Z1 (11 (757 (tsma)))].

[ENm+5:tN (m+1)+(6—N)]

sup Z1(t) < ms[Zo(rs? (72 (757 (tsm+8))))

[ENmA+9E N (m+1)+(10—N)]

+ 21 (i (i (72 (7 (tgmas))))]- (35)

sup Z1(t) < my[Za(g2(tnman)) + Z1(g1(ENmanN)))]-
[ENmA(N+1)EN (m+1)+2]

with g2(t) = 77 (17 (o (12 (7 (32 (1)) --))

Now, we will give the proof of the last inequality of the first equation (33). The
detailed demonstration of second and third equations, (34) and (35) will be given in
the appendix .

Proof of the last inequality of the equation (33): Let t € (tnm4(N=3)s tNm+(N+1))
Z(t) > 0 and Y5(t) = Ya(tnm+(n-3))-
By using (29) and the fact that , Za(tnm(nv—3)) = 0, we have

Zg(t) + mQ(Zl(Tl(t))) + mg(t — Tl(TQ(t))) + ...+ mN,Q[t — hg(t)]
+my_1[t — h3(t)] — (p2 — )t — [Za(a) + m2(Z1(71(a))) + m3(a — 11(m2(a)))
+.o+my_o(t — ha(a)) + my—1(t — hg(a)) — (p2 — 1)a] = 0.

Zs(a) = 0 because a = maz{u < t, Zao(u) = 0} and 72(a) = a because Zz(a) =0
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then

Zo(t) + ma(Z1(11(t))) + ma(t — 11(72(1))) + ... + my—2[t — ha(t)
+(h2(tNmt(v=3))) = TL(ENmt(v=3)))] +7le 1[t = hs(t) + (h3(tNmt2))

—T1(tNm+2))] — p2Z1(T1 (tNm—l— )))

where

p2 — 1)t = tNmt(v=3))s

ma(Z1(11(t))) +ms(t — 11(m2(t))) + ... + my—a[t — ha(t) + (h2(tnm+(N—3))
—T1(tNmr(v-3))] + mn-1[t — ha(t) + (hs(Enms (v—3)) — TL(ENmr(v—3)))]
= mg(Zl(Tl(t))) -+ mg[t — Tl(t) -+ Tl(t) — 7'1(7'2(75))] 4+ ...+ meg[t — Tl(t)

—+711 (t) —
—hs(t) +

ha(t) + (h2(Enma (N—3)) — T1(ENmy(v—3)))] + mn—1[t — T1(t) + 71(2)
(h3(tNm+(v—3)) = TL(ENm+(v=3)))]

= p2Z1(11(1)) + ms[m1(t) — 71(72(t)] + ... + my—2[71 (1) — ha(t))

+(h2(t Nm(N—
+(h3(tNm+(N—

Then

3)) = TL(ENmt-(v—3)))] + my-1[T1(t) — h3(t)
3)) = T1(ENm+-(v—3)))]-

Zz(t) + ,0221(7’1(15) + mg[Tl(t) — 7’1(7‘2(25))] 4+ ...+ mN_Q[Tl(t) — hz(t)
+(h2(tNmr(v=3)) = T1(Enma(v—3)))] = mNn—1[T1(t) — h3(t) + (h3(Enm+(v—3))
—T1(ENmy(v-3)))] = P2Z1(T1(Enms (v—-3))) = (p2 = D)t — tnvmr(N—3));

which implies that (when ps < 1)

Z1(11(t)) < Z1(m1(ENmy(v—3))) for all t € [Enmy(v-3)s ENms+(N+1))5

but the function 71 (.) is continuous and strictly increasing from [t Nm-+(N—3)s ENm+( N+1)]

in [71(ENmg(v—

we have

3))> T1(ENm(n+1))]- From where, for any t € [71(Enm4-(v—3)), T (ENm+(N+1))]5

Z1(t) < Zi(m1(tNme(v—3))) for all t € [ (Enmyv=3))s T1(ENmt-(v+1))]s

By definition of the sequence {t;}, we have initially Zi(typm(nv—3)) > 0, thus
T (tENmt+(N=3)) < tNm+(n—3), and in the second place Zi(71(tNm+n)) = 0, thus
tNmAN = TL(ENm+N) < TL{ENmr(N+1))-
To conclude, we recapitulate all the results.

We have

sup Z1(t) < Z1(mi(ENm+(v—3)));

[tNm+(N=3)stNm+N]
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and we have

sup Z1(t) < mNnZ1(T1(ENmt-(v—3)))
[t Nm+NEN (mt1)+2]

the two inequalities imply, on the one hand ,

Z1(tNmt1)+2) < MNZ1(T1(ENmt (v—3)))s (36)

and in addition,

sup Z1(t) < Zu(mi(tNms (v—3)))- (37)

[t Nm+(N=3) st N (m+1)+2]

The last inequality (37) is valid for any m, by replacing m by (m+1). We have

sup Z1(t) < Z1(mi(tn(m1)+2))-

[t N (m+1)+25t N (m+2)+2]

Thus, by using (36), we have

Z1(t) < myZy(T1(tnmy(v—3))) for all t € [tngnii)ra: INmr2)+2]- (38)

NOW, let Sm = tNm+(N—3)' If
7

(38) implies that

lim t; = oo, then lim S; = oo, and the inequality
—+00 1—00

for all t €[S, Smia], Z1(t) <mn( sup  Zi(u)),
Sm72SuSSm

by iteration and because my < 1, we lead to the anticipated result.

All the other inequalities will be shown in the same manner.

We will finish this section by two numerical results.

It is supposed that the customers arrive according to a Poisson process with pa-
rameter A = 1 and that the service time is an i.i.d sequence with an exponential
distribution with parameters p;.

In the following tables, we give examples in simulation to illustrate the stability of
the network when the condition (18) of the theorem 2 is verified .
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e Case of a network with two stations and eight classes

| p2 | p3 | pa | ps | pe | p7 | ps | Percentage
01]02]02]02]03]01]03]0.2 51%
02]03]02]02]02]01]03]0.2 92%
02]02]02(01]01]02]02]02 100%
01]02]03]01]02]02]02]0.1 99%

The case of the averages m; = 0.2359, mg = 0.2359, m3 = 0.2359, m4 = 0.0883,
ms = 0.0883, mg = 0.2359, m7 = 0.2359, mg = 0.2359. The percentage is 100% i.e.
all customers are served and the network is emptied (case of stability) .

e Case of a network with two stations and twelve classes

| B2 | 3| pa | Bs | Me | p7 | B8 | M9 | o | 11 | pi2 | Percentage
01(02(01(01/01,03|01]02]01}01)01]0.3 49%
01{02(01(01/01(02|01}0.1|01|02]0.11]0.1 100%
01{04(01(01/01(01/01}0.1|01|01]0.11]0.1 97%
020101010101 (0.1(0.1(0.1]0.21]03]0.2 95%

The case of the averages m1 = 0.0883, ms = 0.2359, ms = 0.0883, m4 = 0.0883,
ms = 0.0883, mg = 0.2359, m7 = 0.0883, mg = 0.0883, mg = 0.0883, m19 = 0.2359,
m11 = 0.0883, m12 = 0.0883. The percentage is 100% i.e. all customers are served
and the network is emptied (case of stability).

Now, in the following tables, we give examples in simulation to illustrate the
instability of the network when the condition(18) of theorem 2 is not verified.
e Case of a network with two stations and eight classes

Bi| p2 | M3 | pa | ps | pe | 7 | ps | Percentage
0203[02]02[0201]01]0.2 0%
03/01[01]02]03[02]0.1]0.1 0%
05/01]01]02]01]02]02]0.1 0%
02/01][02]03]01[02]01]0.3 0%

The case of the averages m; = 0.2359, mg = 0.2979, m3 = 0.2359, m4 = 0.2359,
ms = 0.2359, mg = 0.0883, m; = 0.0883, mg = 0.2359. The percentage is 0% i.e.
there is blocking in the network (case of instability) .
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e Case of a network with two stations and twelve classes

P | B2 | p3 | pa | Bs | fe | pr | B8 | M9 | o | a1 | piz | Percentage
03(01(01/02)01(01(01(0110.1]0.1]0.1]0.1 0%
02010101 /01(02(01(02|0.1]0.11]0.11]0.2 0%
04(01(01}01/01(01/02}01|01|01]0.11]0.1 0%
02{01(01(01/02(01/01}01|02|01]0.11]0.1 0%

The case of the averages m; = 0.2979, ms = 0.0883, m3 = 0.0883, m4 = 0.2359,
my = 0.0883, mg = 0.0883, m7; = 0.0883, mg = 0.0883, mg = 0.0883, m1o = 0.0883,
my1 = 0.0883, m12 = 0.0883. The percentage is 0% i.e. that there is blocking in the
network (case of instability) .

5.APPENDIX

The proof of the inequalities (34) and (35) is done in two stages:
We give the proof of the last inequality of the equation (34)
1st Stage:
We will prove the following inequality :

Z2(92(tNm+N))) + Z1(91(ENm+N)))) < Z1(T1(ENman))- (39)
Proof. By definition, go(t) satisfies

tNmr(N=3) < 92(ENm+N) < ENmy(N+1)s

thus by using the conserving property (16), we clarify the relation (29) for ¢t =
tNm+(N—3) and for t = ga(tnm+n) the fact that

Yo(tnm+n) = Yo(92(tNm+n))-

Then,
Z2(92(tnm+n)) + p221(11(g2(ENm+n))) + ms[T1(g2(Enm+n)) — T1(T2(92(ENm+n)))]
+oo +my—2[T1(92(ENm+N)) — h2(g2(tnm+N)) + (h2(Enmt(v=3)) — T1(ENms(v—3)))]
+my-1[71(g2(tnm+n)) — h3(g2(tENmiN)) + (R3(Enmt(v—3)) — T1(ENm+(N=3)))]
—p2Z1(T1(ENm4(v—=3))) = (P2 — D]g2(tNm+N) — tNm(N=3)]-

The last expression can be written as follows :
(P2 = D)(92(tNm+N) — tNmr(N—3))

= (p2 — D]g2(tNm+N) = 93(ENm+nN) + G3(ENm+N) — ENmt-(v—3)]
= —(p2 — D[Z2(g2(tnmtn))] + (p2 — D]g3(ENm+N) — tNmr(N—3)];
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with g3(tnmen) = 12(72 (72 P EP (tvman))) )

thus

p2Z2(g2(tNm+nN)) + Z1(g1 (ENm+n)))] + ms[T1(g2(Enm+n)) — T1(T2(92(ENmtn)))]
+.. + my—2[Ti(g2(ENm+n)) — ha(g2(Enm+n)) + (h2(tnmy(v—3)) = TL(ENmt(v-3)))]
+my-1[m1(g2(tEnm+n)) — h3(g2(tENm+N)) + (B3 (Enme(v—3)) — T1(ENm+(N=3)))]
—p2Z1(T1(ENmt(v=3))) = (P2 = D)(93(ENm+N) = ENm(N=3))s

thus

Z2(g2(tNm+N))) + Z1(g1(tENman))) < Z1(T1(ENmt(N—3)))-

2nd Stage; We give the proof of the second equation (34)
1st case
If 79(t) < tnmen < t, then we will have thereafter:

tNman = T (o (52 (12 (757t ))<= T2(g2(t))
<t—m(g(t)),

1.e

Zo(ra(tnmen) + Za(r5" (tnmen)) + o+ Z2(77) (75
< Zo(1a()) + Zo(ri2 () + oo+ Z1 (1 (2 (P (1)
< Zo(ma(t)) + Za(rP(8)) + oo + Zlm@’(...(é” (2 (7
+Z1(g1(t)),

but ¢ still satisfies (like Y1(¢t) = Yi(tnm+nN))

(12 (12 (tmaw))))--)
£))))-)) + Za(g2(1))
)))-)) + Za(g2(1))

Z1(t) + mn[Za(ra(1)) + Zo(ry2 (1) + Zl<n<r§ (1) + 2177 (77 (1))
+ Za(ra (2 () + Zo(rs (rP (152 (1)) + oo + Za(g2(1)) + Z1 (1 (t))]
—mN[zz<m< Nt n)) + Zo(m8) (Exmen)) + Z1 (11 (757 (Enmee )
Z (7} (aﬁ ) + Zo(m(r P (5 (tmen)))
)

Zo(r? (r{2 (72 (txom ) + e + Za(92() + Z1(91 (Evm )]
(pl -1t - tNm+N) <0,

thus, we have necessarily

~

2

NN

Z1(t) < mn[Z2(92(tNm+nN)) + Z1(g1(ENm+N))]-
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2nd case: If typmyn < To(t) <t < Enmi(n41), We have on the one hand,

Yo(mo(t)) = Yo(r2(tNm4nN))s

this implies that
Za(a(1)) +maZy (11 (1a(t))) + ms[Za (i (1)) + Zl<n<r§2>< O]+ .
N[ Z1 (11 (12(1))) + Z1(r7) (ra(t) (2 (12(1))) + Za(r32 (12 (ma(1))))
oo Zulha(ra(t)] + 2ol >>+Zl<n<é2><>>> ARG RION)
+Za(ra(r2 (P (O))) + Zo(rD (7P (7P (0))) + oo + Zi(ha(ma(t)))]

—Za(T2 tNm+N)) ma(Z1 (11 (r2(tnmin)))) — ma[Za(7) (Enmin))

(
+2Z4(m (ry <tNm+N>>>>]— ol Zy(r1(ra(tnmsn))) + Z1 (1 (1t n)))
+ Zo(a(1) (ra(tma ) + Za (182 (1 (1ot ) + woe + Z1 (Ba(2(tymn))]

(7
Nm+N>>>> + Zu (2 (5D (tvmen)))

— 1 [Zo(T8 (Enman))) + Zm(ﬁ
) D5 (tnman)))) + o+ Zi(hs(ra(tnmen)))]

2o (7D () + Zo(r]
= (p2 — 1)(r2(t) = 22(twmsn))
= (p2 — D)(1at) — t + t+ 1a(t) — 7o) + 75 (t) — 737 (t) + 7o (75 )
(1) + o+ Za(ra (D (5 (7 (”( @())) Zo(ro(r{P) (oo (7
—tNm+N + ENm+N — TQ(tNm—i-N)) + (tNmyN) — T2(tNmyN) + T
~ 732 (tNmn) + 71(72 <tNm+N>> — 71(rs? (tnmew)) +
+ Za (1o ({2 () (12 () <tNm+N>>> Zy(ro(7?
Zs(7y
(

RGRICERINN)
2)(tNm+N)
(2D (2 (1))
IR )
(
1

)+

(.

= —(p2 — V[Za(ma(t)) + <>>+Zl< (2 (1)) + Zu(r
GRICRIO)ES -+ ol
(75

2
+Zo(ra(r (77 () + Zo(r?
+(p2 = 1)[t — tNm+N+Tz()—Tz(tNm+N)+Zz(T2(Tl (..

(D P )] +
2)
1

T

7 (e 2( 2 (2 (1)))]
2>r2< Y(tnmin)))

)
(

—Zo(ra(r7)(.. ]+ (p2—1>[22<72<tNm+N>> Zy(r >(tNm+N>>
+Zl<n<752’§ i) + 21 (7" <tNm+N>>>+Z%2<Tz<a? <T§><tNm+N>>>>
Zo (7P (7P

T (tNman))) + oo+ Zo(ra(rD (7D (1 (7 (v n)))s
thus,
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p2(Za(ms(t)) + Za(ri2 (1)) + Zo (i (2 (1)) + Za (7 (757 (1))

+Za (o (2 () + Zo(r (5D () + oo

+Za(ra (12 (o (52 (1P (2 ()] + (p2 — D]t i

+72(t) = To(tnmin) + Za(ra(rD (72 (P (12 (tnmaw)))

~ Zo(ra ({2 () (12 (7D ()] + ma(Z1(r1(m2(1))) + [ Za () (1))

%(n(ri’( D))+ . + my—a[Z1 (11 (12(1)) + Z1 (1 (12(1)) + Za(ra(r (12(1))))

+ZQ<2 (7P () + - o+ Za(ha(rolt )] + my-11Za(ry? (1)) + Zi(ri (32 (1))
2172 (FP0))) + Zo(ra (7P (H (0))) + Zo(rP (7P (12 (1)))))

oot Z1(hs(r2(D))] — P2l Za(r2(tnmin) + Zo(rs> (Enmen))

+ 21 (1 (152 (tmaw))) + Z1(r2 (77 (tvma ) + Zo(ra(ry >< 732 (tNmen))))

+ 2o (2 (1 (137 (e N)))) + e+ Za(ra (12 (2 (7 (152 (t )]

—ma(Z1 (11 (T2 (tNmw)))) — m3[22<72<2><mm+m>>+Zl<n<rz (1)

oo = mn_o[Z1 (L (T2t ) + 227 (ot n))) + Zo(ra (1) (ra(tnmen )

+ 2o (2 (1) (ra(t N ) + e A Z1 (i (T2t )] ma %(é”(mmw)))

) _
AGICE ’<§Nm+N>>>>+Zl< 7P (tnmen) + Za(ma(r2 (182 (tvman)))))

2(
+ Zo (s (T (152 (Ema ) + o+ Z1(Ba(Ta(Enms )]
<p2—1>[t—tNm+N+rz<>—rz<tNm+N>+z2<m<n>< (2 (72 (7 (tvman)))
—Zo(ra (. < P2 ()] + [Zm”(>>+zl<ﬁ<72<>>>+zl<7 2 (1))
+ Za(ra (D (1 <>>>>+Z<<2><”<§><>>>>+ A Zo(ro (D (2 (1D (2 (1))
~[Za(r (¢ N ) + 21 (12t ) + 21 (17 (e n)
+ Za(ro (2 (157 (tNmN)))) + Zo(r (1P (152 (twmy)) + -
+ 2 (o (T2 (72 (12 (7 (tNm ) o

with

L= Zy(no(t)) + Za(r3" (¢ >+Zl<n<fé”<t>>> <<2’<r§2><t>>>
+ Za(ra(r2 (1P (1)) + Zo(ri2 (72 (77 (1)) +

+ Z (1o (TP (D (1D (12 (1))

and

L = Zo(ra(tNman) + Zo(ms? (tnmen)) + Z1 (10 (157 (E s )
+ 21 (12 (7t ) + Za(ra(rD (1 (1))
+Za(i (7 ”( T2 (i n))) + oo+ Zo(ra (12 (o (152 (72 (77 (tNmaw)
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N-2 N-1
Like po = Z my, + Z my,, the last equality can be written as follows :

I3=2 ly= 3

malZa(1a(t)) + Za(r3”) (8)) + Zu(ri(ry? (1)) + Zu (2 (52 (1))

+ Zo(ra (2 () + Zo(s2 (P (12 (1)) + ..

+Za(ra(r? (o (72 (7P (2 ()] + ma(Z1 (i (a(1))))

+m3[Za(ma(t)) + Za(ry 1 (®) + Z1(r (152 (1))) + L]

Foo 4+ ma[Za(a(1)) + Z1 (11 (72(1)) + Za (77 (r2(t)))

2( (

+ Za(ra (P (1a(1)))) + Za(ry)

Fmy_1[Za(ra(t)) + Zo(7P(t .

(2 0))) + Za(y? (72 (ry -+ Zi(hs(ma(t))) + L]

—ma[Za(ra(tNmin)) + Zo(752 (Enman)) + Zl(Tl( @ (tnmen)))

+ 2 (121 (tnman))) + Za(mo (12 (052 (tvmen)))) + Za(r2 (12 (182 (tnms )

oot Zo(ra (1 (12 (72 (157 (s )] — Mo (Za (1 (r2(tnmen)))

—ms[Za(ra(tnmen)) + Zo(ry? (tnman))) + Za (i (7" ><tNm+N>>>> + L]

— . = mn—a[Za(Ta(tNmen)) + Z1 (T (T2 (tNman ) + Z1 (T (Ta(ENma )

+ 2o (o (twma ) + Za(ry2) (72 (ot Nm+n)))

+.oo 4 Zu(ha(T2(tvman))) + L] — my1[Za(m2(tnman)) + Z2(72( (tNm+nN)))

+ 21 (11 (152 (tman))) + Z2(72 (157 (e n))) + Za(ma(r2 (77 (Evme )

+ Zo(r (7P (7P (E s ) + o+ Zi(hs(ra(tnmen) + L)
= (p2 — D[t — tmen + 72(t) — Ta(tnman) + Za(ra(r2(. ( )

~Zy(ro (P (o (7D (D (P (O))] + [Z2(r$D (1)) + Zu(r (13

+ 2 (r(r ”<>>>+Z<2< 1“< P + Zo(r? (7P (7Pt

oo Za(a (T (D (7P (P - [l S i) +

+ 21 (7 (P (Eman))) + Zo(ra (2 (77 (tvma ) + Za(ry

+Z2(72(T1(2)( (A (n (”(tNmm))]

In addition, we have Y1 (t) = Yi(tnNm+n), then the relation (30) gives

+Za(ra (77
t

~

2)

P (5P (tvmen)))
)
)
(

nir (787 (Evm )

(7
t))
)
Z
ol

Zi(ri(r (1))

) + Zo(ri? (7 (77 (1))

(raltme ) + 2o (tvmen)) ()
t

)+ mn[Za(r <>>+Zz<fé><>>+
%(rf” (72 ()) + Za(ra (PO (7 (1)
(1) + Z1(g1(t))] — [Z2
(tnmsn))) + Z1 (g < 2 )
<r§2)<twm+w)>>>+z2<fz> D8 (tnman))) + ...
1(91(tNman)))] = (p1 — 1)(75 — tNm+N)-

I}
+
N
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which can be written as follows :

2

—
—~
~+
S~—
S~—
-
N
—_
—~
S
—~
o
)
—
—~
~~
S~—
N—r
S~—
-
N
—_
—~
S
)
—~
o
—~
~+
S~—
S~—
~

Z1(t) + mn [ Za(ra(1)) + Zo(7
+ Za(ra (2 () + Zo(rs? (R (52 (1)) + e + Za(g2(1)) + Z1 (1 (1))
—(p1 = 1)(t = tNm+N)
= mn [ Zo(ro(tamsn)) + Zo(T) (tnman)) + Z1(r (152 (Enmsn)))
+ 20T (e ) + Zo(ra(r (7t )

+ Zo(r (T (15D (ENma ) + o+ zmm(”(...( 2
+my[Z2(g2(tNmsN)) + Z1(91(ENmanN)))]-

thus, if

72 (12 (tvman))]

Z1(t) > my[Z2(g2(tnman)) + Z1(91(ENmanN)))]-
then,

my[Za(ra2(t)) + Zo(ry? (1)) + Zi(ri (737 (8))) + Zo (72 (52 (1))

+ Za(ra(rD (77 () + Zo (2 (12 (77 () + ..+ Za(92(8)) Z1 (91 (1))
~(p1 = )(t — tnmrn) < mylZo(ra(tnmen)) + Zo(r”) (Enmen))

+ 20 (i (1 (tvma ) + 21 (72 (157 (Eme )

+ Za(ra (17 (1) (e )))) + Za(ry? (12 (757 () -
+Za(ra (12 (52 (12 (13 (tvma3)))-

by using the property of the function 7;(.), for i = 1,2, we have

[Za(7a(t)) +Za(72 () + Zi(r (77 (1)) + Z1(r (7 (1))
+ Za(ra(r (2 () + Zo(77 (77 (2 (1)) + o+ Za (i (I (1))

= [t = (i ()]
> [t = (7211 (- (r2(71(72(1)))) )]

= [Za(m2(t)) + Z1(11(12(1))) + Z2(T2(71(72(1)))) + Z1(T1(m2(T1(72(2)))))
+.o. + Z1(g4(2))]

with g4 = 71 (72(71 (... (72 (71 (72(2))))-..)))

thus,
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(1 = D)t~ trren) +malZa(raltvnen) + Zo(rs? (tnm+N)))

+H(n( 7 (e n)) + 21 (D (tvmen) + Za(ra(r P (57 (Exman)))
+ Zo(1) (12 (132t ) + oo+ Za (o (12 (782 (12 (152 (E s )]
—mpy[Z2(m2(t)) + Z1(11(72(t))) + Z2(m2(11(12()))) + Z1(T1(72(T1(72(1)))))
+oot Za(ga())))] > 0

)
o
2

(42)
The relation (40) allows us to write

P21 Za(ra(tnms ) + Za(7i7 (tnmsn)) + Z1(1 (187 (tmaw))

+ 2 (T (ENman))) + Za(ra(rD) (47 ><tNm M)

+ 2o (132 (7} e V52 (txima ) + oo+ Za(ro (12 (2 (12 (132 (E )]
—p2[Za(ma(t)) + Za(r52 () + Zo(ni(ry? ())) + Zu (7P (77 (1))
+Za (o (P (D (0))) + Za (g2 (e (5§D (1)) + e + Z1(91(2)))]
< (1= p2)[t = tnmen + 7o) = To(tnmen) + Zo(ra (72 (32 (r 2 (52 (E )
~Zo(ra ({2 (7D (D (P ()] + [Z2(rs? (tnme ) + Z2(Ta (757 (Enmsn)))

+Z1 (2 (7P (tnme ) + Zo(ro (12 (757 (tnme ) + Za(r52 (12 (757 (tnme)))
oot Za(a (T2 (2 (7P (52 ()] — [Z2 (5 (1))

+Zu (2 () + Zo(7P (7P (1)) + Za(ra(w P (7P () + Zo(rP (7P (77 (1))
oot Za(ra (2 (D (7P (12 (0))] = ma(Z1 (1 (22t )
—ma [ Za(Ta(tnmin) + Zo (1) (tnman)) + Z1(7a(7y” )(tNm+N))) ]
o = mN 2| Za(Ta(tNmiN)) + Z1(1 (Ta(tNman))) + Z1(7 (ot )

+Za(ra (17 (rat N ) + Za(r32 (12 (Pa(t N s8)))) + e+ Z1 (B (T2t )]
—mN-1[Za(a(tNman)) + Zo(rs? (tnman))) + Za(ma (7] ><tNm+N>>>>

+ 2 (T (152 (tvmaw)) + Za(ra (72 (32 (Ems ) + Za(r3 2 (72 (52 (Eman))))
+.. + Z1(h3(7'2(75Nm+N)))]

(43)
In addition the relation (41) is rewritten as follows
Z1(t) + mu[Za(h1(8))) + Z1(r (h (8))] + (1 = p1)(t — tnmen)
= mN[sz(tNmm» + Za(ry?) (1)) + 21 (8 (tnmn)))
Zilry (my (i) + Loy (73" (b)) )
+Z2<Tg P (P (ENma ) + woe + Za(ra(rN( <T§2>< <2>< N(tNman)))]
2(

—HTLN[Z

2<t>>+22<f2<><>>+zl<ﬁ<r§2><>>>+21 3 (7} )t>>>
+Zz(7'2(7')

( (
(7)) + Zo(r (72 (FP (0))) + oo + Zi(ri(ha(1)))]
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Now, one will distinguish two cases according to the right-hand side term from
the equality (44) is positive or not. If

Zo(1o(tNmin)) + Zo(37) (tnmsn)) + Zl(T (2 (Enmen)))

+ 21 (1 (5 (ENmen))) + Za(ra (D) (74 (tnp))

+ 2o (1P (7 (tvman)))) + - - Zm(a (. 2(2)( N7 (tvmen))
< Zo(ma()) + Zo(37 (8) + Za(ma (32 (1)) + Zu(r (77 (1))
+Za(ra(r{2 (7P () + Zo(ri2 (1P (P () + -+ Za(g1(2)))

Then according to the equality (44) and like (p; < 1) we have

/\
\_/

Z1(t) < mn[Za(g2(t)) + Z1(g91(1)))]

Which is the required result, if not, we have

Za{raltymen)) + Zo(3? (tNman)) + Z1(ra (757 (tnme )
+Z(r (2>< <tNm+N>>> + Zo(ra(r (152 (tnmen)))

+ Zo(r2 (1 (17 (s N))) + e+ Za(ra (72 (32 (72 (52t ) >
Zy(m(t)) + szé (1) + Zu(n (12 (1)) + Za(r2 (77 (1))

+Za(ra(r{2 (77 (8)))) + Za(ry? (2 (737 (£))) + . + Z1(01 (1))

Then since my < p1 < p2, we have

MmN [Za(ra(tNmsn)) + Zo(rs? (tnman)) + Z1(ri(ry? (tnmen))
+ 2 (M (0 (tnmaw) + Za(ra(r2 (17 (tEvman)))

+Zo(rD e T (Nt )))) + oo+ Zo(ra(r7)( <T§2>< * ><r§2’ (txm+n)))]
i Za(m®) + 2o 0) + Za(r (") + 22D (P 1))

+Za(ra (D (77 (8)))) + Za(ry? (12 9( £))) + - + Z1(91(1)))]
< p2lZa(ma(tnmin) + Za(ri2 (txman)) + Z1(r (12 (tvman)))
+ 2 (M (0 (tnmaw) + Za(ra(r2 (17 (tnman)))
+Zo(ry o) 72 (ENmpn))) + o+ Zo(ra (PP (77
—p2|Za(ra(1)) + Zo(rs2 (1)) + Za(ma(37) () + Za({7(
+Za(ra (7 (737 (6)))) + Za(ry? (D (737 (8)))) + .. + 21

By using always the equality (44), we obtain

i ><r§2’ (txman)))]
=2 (1))
(g1(6)]
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—my[Z2(92(tNm4N)) + Z1(g1 (EnmaN)))] < p2[Z2
tnmen)) + Z1 (i () (1)) A
’< V(txman)))) + Za(7 <7£2><T§2><tNm+N> ) + .
§< (7 ><Tf >< ? >< tunen))] = ool Za(ra(1) + Zo(ry2(t))
(

(2

)+ Zi (P (12 (1)) + Za(ra(r2 (152 (1))

T2 (tNm1N))
t

(tnm+n)))

this implies, according to (43),

Z1(t) — mu[Za(g2(tnmen) + Z1(g1 (Exms )] + (1= p1)(E = Evmen)
< (1= p2)[t = tamen + 72(t) = Ta(tnmen) + Zo(ra (72 (e (32 (12 (152 (E )
~Zo(ra ({2 (7 (2 (7P O] + [Z2(r (tnme ) + Z1(1a (757 (Exmsn)))
+ 21 (1 (5 (Eman)) + Zo(ra (2 (787 (s ) + Zo(ry? (12 (1 (tnmaw))
oot Za(mo (1 (7 (7P (D ()] = ma(Z1 (1 (ot n)))
—m3[Zo(rs? (tnmen))) + Z1 (11 (17 (ENman))] = oo — mv—2[Z1 (71 (T2 (N )
22 (maltwamen))) + Za(ra(r (raltrman ) + Za(r (D (atrmen))
o (bama ()] - my-1[Za(7" (tNm+n))) + 21 <n<r§ N(tNmn)))

21 (2 (1 (tnman))) + Zo(r2 (2 (157 (tnman)))) + Zo(r8? (12 (17 (tnmen))))
+ .+ Zl(hs(Tz(tNm+N)))]

(1—

p2) < (1 —p1), then,

l\)

l\)/—\

however

Z1(t) - [Z (92(tNman)) + Z1(g1(tNman)))] < —ma(Z1(T1(T2(ENmN))))
—m3[Zz(Tz (tNm+N)))+Zl(Tl(Tz)(tNm+N))))]— —mN o[ Z1 (11 (T2 (ENmaN)))
+Z1(r2 (7 <tNm+N>>>+Zz<Tz<n (m(twmw»))%(a 7P (ra(tnmen))))
bt Z(hama (b)) - 2o (tman) + Zu (i (tnms n))))

Z1(r? (1 (tnmn)))) + sz(r‘ (757 (tnmen))) +ZQ<T§ P (7P (tvmen))))
oo Dy (gt n)] [22<T§><twm+N )) + Zi(ri(ry tNm+N>>>
+ 2 (T (5 (tvman) + Za(ra(r2 (157 (s ) + Zo(r (12 (77 (tvmen )
+. +Z2(T2(71(2)( (2 P (tvman)))] < 0

Which completes the proof of the last inequality of the equation (34).

(
[
(2
T

2
(2
b

The demonstration of the other inequalities will be made in the same manner.

Now, we give the proof of the inequality (35)
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So, as in the previous cases it is sufficient to give only the proof of the last inequality
of the equation (35).
Proof. ¥t € [t Nyt (N+1)s EN(m+1)+2], We have

Z1(t) >0 and Zy(t) >0

We can then write [ty (N+1) EN(mt1)+2) = Uﬁiéw(ai, a;+1) such that, at each in-
terval (a;, ai+1) we have Vt € (a;,a;41), Z1(t) >0 and Zs(t) > 0 or Vt € (a;, ai+1),
Z1(t) >0 and Zy(t) =0

Thus in the next we distinguish two cases:

1st case: Let [a,b] C (tn(m+1)+1>EN(m+1)+2) such that

Zy(a) = Za(b) =0 and Zs(t) >0 for all a <t <b

Let t € (a,b), thus a < 72(t) < t < b and Ya(72(t)) = Ya(a), thus by using the
relation (31) on the interval (a, m2(t)), we have

Za(72(t)) + ma(Z1(11(72(1)))) +m3[Z2( 2 (6)) + Zu(n (2 (1))

)
+o ot gl L(1(m2(8))) + Z1(r2 (r2(1))) + Za(ra(r? (m2(1))))
+Za (7 < ra (1)) + - - Za(ha(ra(t)] +mavoa (2 Zy(rs7 (t)))
+Zl<n<f2 ) + 20D 0)) + Za(ra(rD (2 (1)) (45)
+ Zo(1) (12 (52 (O)))) + oo+ Z1(h3(2(1)))] — p2Zi(11(a))
— (p2 — 1)(ma(t) —a)
( o —1)(me(t) —t+t—a)
—(p2 — 1) Za(12(t)) + (p2 — 1)(t — a)
N-=-2 N—-1
by using the fact that ps = Z my, + Z my,, it follows that
l3=2 14=3

Zo(7a(t)) + maZy (11 (12(t))) + ma[Za (75 (1)) + Z1(r1 (52 (1))
bt sl (2 (1) + Zi(r7 (1a(t))) + Za(ra(r7) (ma(8))))
+Zo(r @)( N 72(0))) + oo+ Zu(ha(ma(8)))] + miv—1 [Za(757(£))
+ 2y (12 (1) + Zo (7P (72 (1)) + Za(ra(r P (77 (1))
2 @)( ) < é () + - + Z1 (ha(m2(1)))]

) Z mi,) Z1((a

13=2

= (D my, + Z my, — 1) Zy(12(t)) + (p2 = 1)(t - a)

13=2 l4=3
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)+ Zy (1 (157 (D)) + ..+ mn—2[Za(r2(1))

+Zi(Ti(ma(1) + 71 ) + Zo(ra (12 (12(t)))) + Zo(77) (72 (r2(1))))
oot Zi(ha(12(8)] + mu—1[Za(ma(1) + Za(77 (1)) + Z1 (1 (77 (1))
+ 21 (TP (1)) + Za(ra(r P (#P 0)) + Za(mP (7P (77 (1))
N-2 N—-1
Fot Zi(ha(ra ()] = (OO muy + > mu,) Za(7i(a))
13=6 14=3

= (p2 = D(t = a) + maZ1(n1(a)) — ma(Za(72(t)) + Z1 (11 (72(t)))

This last relation is a consequence of the property of conservation appliqued at
the second station. By using the same property for the first station on the interval
(a,t), Y1(t) = Y1(a) and the relation (30) implies this

Z1(t) + my[Za(ra(t)) + Zo(r32 () + Z1 (i (152 (1))

+21(r (1 () + Zo(m(ry? (5 () + Za(r” (77 () () (40)
ot Za(g1(8)] - Za(a) — ma Z1(ma(a)) = (o1 — 1)t - >
(because the fact that Zs(a) = Z(b) = 0 involves that m2(a) = ( ) =a)

This equality implies that

Zl(t) < Zl(a),
in other words, the last equality implies, on the one hand that
m(Zo(r(h) + Zo(r? () + Z1(n1 (157 () + Z1(717) (2 (1)

+ Za(ra (TS () + Za(ry )(71(2)(72(2)(t))))+ A+ Zi(g1(1)))] (47)
<mnZi(ri(a))

and in addition, it can be written as follows:
(pr = 1)(t — a) + myZy(1i(a)) — mu[t — g1(2)] = Z1(t) — Zi(a) > 0

and like t—71 (2()) < t—71(m2 (11 (12 (1)) < t— (2 (F 2 (HP (1)) < ... < g1 (2)),

we have:
(p1 — 1)(t —a)+myZi(m1(a)) — my[t — 11(72(t))] >0
The equality (45) can be rewritten in the following way:
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ma[Za(7a(t)) + Za(rs2(8)) + Z1 (11 (52 ()] + oo + mn—2[Za(7a(1))
P 1a(t)) + Za(ra(r{? (1a2(1))))

+Zl(71(72( ))) Z (7}

+Zo(r 2 (7P (1 (1)) + - -+ Za(ha(ro )]+ myaZa(ma(D)

+ZQ<T§2><>> <1<T§2><t>>> Zy(7 2(7 (1))

+Z2(7'2( < <>>>>+ZQ<T <<2>< () + - + Zi(ha(7a(t)))]
Zng Zmz4)Z1

(02 =)t - a) +maZi(T1(a) — ma(t — 1(72(1))))

however

[t = 7u(2(t)] < [t — g1(2))],
Thus,

p2Z1(11(a)) — palZa(ma(t)) + Zo(7) (1)) + Za (i (752(1)))
+Z1(r (71 (1) + Za(ra(r (17 (1)) + Zo(rP (7P (77 (1))
+oo+ Z1(g1()] < (1= p2)(t —a).

In addition the relation (46) implies that

Z1(t) = Zi(a) + (1 = p1)(t — a)
= myZi(71(a)) — my[Za(72 )) Zo(r{2 (¢ ))+Z( (737 (1))
t

(t
+Z1 (P (52 (6)) + Za(ra(rP (5P (1)) + Zo (7 ’<”<”<>>>>
+... + Z1(q1(2))]

(48)

(49)

(50)

By using the inequality (49), including both terms are negatives, and by taking

account that my < p2, we obtain

Z1(t) = Zi(a) + (L= p1)(t —a) < (1 = p2)(t — a),
and since (1 — pg) < (1 — p1), then Z1(t) < Zi(a)

2nd case: Let [a,0] C (En(m+1)+1> EN(m+1)42) such that Zo(.) = O like Zz() is a

positive function, if it is differentiable for all ¢ € [a, b, then Zo(t) =
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Z My, Quy (1) Z my,Qu(t) = Z(t Z my, Q, (t) Z mi, Q, ()

l3=2 14=3 ) 13.2 la=3
= Qi (t) = Qu(t), VI3 =2..N =2,
Vig=3.N-1,

Qa(t) = Q2(0) + pn Ti (1) — poTa(t) = Qaft) = MlTl( ) = p2Th(t) =0
= uTi(t) = wTa(t)
Q3(t) = Q3(0) + p2To(t) — usTs(t) = Q3( )= M2T2( ) — usT3(t) =0
( (

= MQTQ t ,u3T3 t)

QnN-1(t) = QNn-1(0) + pun—2TN—_2(t) ‘ '
—punN—3TN—3(t) = Qn-1(t) = pn—2TN-2(t)
—uN-3TNn-3(t) =0 .
= pn—2TNn-2(1) = pn-3TN-3(t)
this implies
Ti(t) = peTo(t) = psTs(t) = ... = pv—1Tn-_1(t).

Thus we have on one hand:

Z1(t) = m[Q1(0) + t — mT1(t)] + Z My [Q1, (0) + iy 1 Thp -1 (8) — pu, T, (1))

la=5
+ ) [Q (0) + puy 1 Thy -1 () — pu, T, (1)

=4

' N-3 ‘
= Zl(t) = ml[l - 1T1 ‘|‘ Z my, le 1T12 1( ) - :ul2Tl2 (t)]

lo=5

N '2
+ >y g Ty -1 (8) = pu, T, (8)] = 0

=4

=my + m4u3f3(t) + m5,u4T4(t) 4+ ...+ mNMN—lTN—l(t) — [Tl(t) — T4(t)
~5(t) = ..~ T (1) .

=m1 + Z mllﬂlrlTlrl(t) + Z mlzubflTlQ*l(t) - Bl(t)'
l1=4 12:5
And in addition
N—-2

N-1
ZQ(t) = Z mi, [:ul3—1Tl3—1( ) :ul3Tl3 + Z my, /Ll4 1Tl4 1( ) - Nl4Tl4(t)] - BQ(t) =0.
I13=2 14=3

Thus . ‘
paiTi(t) = Ba(t) <1
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Since my < p2 we obtain

¢
Z1(t) — Zi(a) = / Z1(u)du < 0.
a
Let us recapitulate above, for all i =0,..., M — 1
Zl(t) < Zl(ai) ifte [ai,aiﬂ]

thus, for all ¢ € [ao, anm] = [Enme(N4+1)s ENmi 1) +2], Z1(t) < Zi(ao) = Z1(ENmg (v+1))
and by the second inequality

Z1(t) < mn[Z2(92(tNman)) + Z1(g1(ENm+N)))]-
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