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SHARP WEIGHTED INEQUALITIES FOR VECTOR-VALUED
MULTILINEAR COMMUTATORS OF MARCINKIEWICZ
OPERATOR
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ABSTRACT. In this paper, we prove the sharp inequality for the vector-valued
multilinear commutators related to the Marcinkiewicz operator. By using the sharp
inequality, we obtain the weighted LP-norm inequality for the vector-valued multi-
linear commutators.
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1. INTRODUCTION

Let T be the Calderén-Zygmund singular integral operator, we know that the
commutator [b, T|(f) = T(bf)—bT(f) (where b € BMO(R™)) is bounded on LP(R")
for 1 < p < oo (see [3]). In [9], the sharp estimates for some multilinear commutators
of the Calderén-Zygmund singular integral operators are obtained. The main pur-
pose of this paper is to prove a sharp inequality for some vector-valued multilinear
commutators related to the Marcinkiewicz operator. By using the sharp inequal-
ity, we obtain the weighted LP-norm inequality for the vector-valued multilinear
commutators.

2. NOTATIONS AND RESULTS

First let us introduce some notations(see [4][9][10]). In this paper, @ will denote
a cube of R" with sides parallel to the axes, and for a cue Q let fg = |Q|~* fQ f(2)dz
and the sharp function of f is defined by

# — L _ d
7 () Z?ZIQI/QV@) foldy.

It is well-known that(see [4])
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#(p) = — —
f (x)—zggggg@/ |f(y) = cldy.

We say that b belongs to BMO(R") if b belongs to L°>°(R™) and define ||b||prro =
—
|67 || oe. If b = (b1, ,bm), bj € BMO for (j =1,---,m), then

m
1l Baro = [ 110511 Bao0-
j=1

Let M be the Hardy-Littlewood maximal operator, that is that
M@ = swpiel! [ 17wy

we write that M,(f) = (M(|f[P))/? for 0 < p < cc.

Given a positive integer m and 1 < j < m, we denote by C7" the family of all
finite subsets o = {o(1), -+, 0(j)} of {1,---,m} of j different elements. For o € CT",
set 0¢ = {1,--,m}\ 0. For b= (b, -, bm) and ¢ = {(1), - -,0(j)} € O, set
bo = (bo(1)s*** bo(j))s bo = bo(1)** bo(j) and |[bs||Bro = ||bo) || B+ |[bo(j) || BMO-

We denote the Muckenhoupt weights by A, let Q@ € A, and 1 < p < o0, w satisfy
the inverse Holder inequality, there exists a constant C' and 1 < g < oo, for any cube

Q, we get(see [10])
(!QI/ (’qd”““)l/q |@|/

In this paper, we will study some vector-valued multilinear commutators as fol-
lowing.

Definition. Let 0 < v < 1 and Q0 be homogeneous of degree zero on R™ such
that [g.—1 Qa')do(a’) = 0. Assume that Q € Lipy(S™'), that is there exists a
constant M > 0 such that for any x,y € S"7 1, |Q(z) — Qy)| < M|z —y[7. Set
bj(j=1,---,m) as a fized locally integrable function of R", then when 1 < r < oo,
The vector-valued Marcinkiewicz multilinear commutators is defined by

b @) = O (b () (@)")V7,

where
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and

Set

we also define that

Ia IFt(f)(x)lzdt)m ,

0 t3

o)) = (

which is the Marcinkiewicz operator(see [11]).
Let H be the space H = {h Sl = (57 \h(t)|2dt/t3)1/2 < oo}. Then, it is clear
that . }
po(f)(x) = [|E(f)(@)]| and u&,(f) () = [|[F (f)(@)]]-

Note that when by = - - = by, |p4(f)(x)| is just the m order vector-valued
Marcinkiewicz operator multilinear commutators. It is well known that commutators
are of great interest in harmonic analysis and have been widely studied by many
authors (see [1][4-8][10]). Our main purpose is to establish the sharp inequality for
the vector-valued Marcinkiewicz operator multilinear commutators.

Now we state our main results as following.

3. MAIN THEOREM AND PROOF
First, we will establish the following theorem.

Theorem 1. Let 1 <r < oo, bj € BMO(R") for j =1,---,m. Then for any
1 < s < o0, there exists a constant C' > 0 such that for any f € C§°(R"™) and any
T € R,

(DI #(@) < O [ Bl maroM(1£1) @) + > > Bl [ 5310 Ma(1s" (£)]1) (7)

j=loeCy™

Theorem 2. Let 1 <r < oo, bj € BMO(R"™) for j =1,---,m. Then |u§2]r is
bounded on LP(R™) for 1 < p < oo.

To proof the theorem,we need the following lemmas.
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Lemma 1. (see [11]) Let w € Ay, and 1 < r < o0, 1 < p < co. When
Q € Lip.(S"1) for 0 < < 1, then |pql|, is bounded on LP(w).

Lemma 2. Let 1 <r < oo, bj € BMO forj=1,--- ,k and k € N. Then, we

have
,Q‘/Hrb Gpoldy < T[ Itsllmsro
7=1
and
1/r &
|Q|/H|b blalrdy | < T Ibsllmmo-
j=1

Proof. For o € C}*, where k < m and m € N, we have

‘Q|/| 10)oldy < Cllboll5ar0

1/r
(‘Q| / ® 10)o rdy) < Clibsl 0.

We just need to choose p; > 1 and ¢; > 1, where 1 < j <k, such that 1/p; +--- +
1/pr =1and 1/q1 + -+ 1/qr = 1/r. After that,using the Holder’s inequality with
exponent 1/py +---+ 1/pr = 1 and 1/q1 + - - -+ 1/qx = 1/r respectively, we may
get the conclusions.

and

Lemma 3. (see [11]) Let 0 < v < 1 and  be homogeneous of degree zero on R™
such that [g,_, Q(a')do(z') = 0. Assume that Q € Lip,(S™™Y), if Q = Q(x0,d),y €

(2Q)¢, then
|z — |z — wo|”
C )
B (|$o —y|" " 2o — y|" 1Y

Proof of Theorem 1. It suffices to prove for f € C§°(R"™) and some constant Cp,
the following inequality holds:

<@/62|M§2(f)($)r—00|d$> <o (Mm@ + Y Y MU PINGE)

j=1 UEC”"

Qz—-—y)  Qzo—y)

o=yl Jeo — g™
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Fix a cube Q = Q(x0,d) and & € Q. We write, f = ¢ + h = gz—i-hz, Where

9i = fixaq and h; = fix(ag)e. If let b= (by,...,by,), where (bj)g = |Q|~ ! o bi(y)dy,
for 1 < j < m. We have

b/ s _
FY(fi)(x) /|x—y<t = |z — y|

{H(bj(x) - bj(y))] fi(y)

= [ | TI® ) = 6)20) ~ (500) — ()a0)) | A(w) Mz —y) 4,
|lz—y|<t j=1 ‘ y’

= Y X 00w - ok [ (00) - (el Sily) =8 g,
i=0 oeC le—y|<t ‘.Z' y‘

= (01(x) = (b1)2q) - - - (bm(2) = (bm)2Q) Fi(fi)(2)
H(=D)ME((br = (b1)2q) - - - (bm = (bin)20) fi) ()

£ (U (bla) — (B)ao)a F (£ @),
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Then by Minkowski’s inequality, we get

\Q! / b @ = (b1 = (r)2q) + (bm = (Bm)2@)) ) o)l
1/r
= M/ (Z HFtb(fz)(iE) — Fi((b1 — (b1)2q) - - - (b — (bm)gQ)hi)(xO)HT) dr

1/r
) (bm@:)—<bm>2Q>Ft<fi><x>w) da

IN
S|~
S—
—~

P_ﬂ
§

S

5

1 oo m—1 BUC | ) 1r

1 1/r
g Q(;Hﬂ«bl—wnw) (Gl )
a1 f, (1 = i) = o)

1/r
—Fi((b1 — (b1)2q) - -+ (b — (bm)m)hz‘)(ﬁo)HT) dx
= L +1I)+ I3+ 14

For Iy, by Holder’s inequality with exponent 1/s’4+1/s = 1 and lemma 2, we get

I o< ‘Q|/1H b)20) (/) (@), da

i ) G

< C|bllpmoMs(lua(f))(@).
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For I, by Holder’s inequality with exponent 1/s" + 1/s = 1, we have

L = Q|/ S S (100)  Ba)e FF (£) (@)l ndn

j=1 ceCy"
- = 1g€Cm !Ql/' 20)ol 15" () (@) rdz
) C;;:(‘ Q'/ el d”““>w (a1 /. lu%%f)(x)ygdx)”s

m—1 o
CY " > [bollBroM(lug® (5l (@)

j=1 ceCr

IN

For I3, we choose some p, such that 1 < p < s, by the boundness of |ug|, on
LP(R")(see lemma 1) and Holder’s inequality, we gain

1 m
b= & /Q |Ft<jr_[1<bj<y>—<bj>2Q>g><x>|rrdx

1/p
< (Q /R ) ijl (bi)20)/x20) (& >£da:)
1/p
< (Q / |H 2Q>pfmpdx>
X . (s—p)/sp 1/s

_— () — (b sp/(s=P) 4
< C (QQ /2(42‘]1_[1(1)](?/) (bJ)QQ)‘ d ) <|2Q|/ )
< CllEllaoMe(If1) (@):
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For I, we have

IE(]J (b5 — (b5)20)R) () — Fo(] [ (b — (b5)20) ) (o)l
j=1
- (Aw<f”2”f?”‘h1@m»wﬂm1dy
B Qzo — )W)l |17
/xo—yﬁt ’1'0 - y‘n—l |:H
/°° / 1z — y)||2(y)]:
0 |zo—y|<t,|zo—y|>t |z — gyt
11w — (85)20)

> 2(z0 — YY)l
" (/0 [/ry>t7:voy<t |zo —y[* j=1

> [z —y)|  [2zo0 —y)|
i </0 [/ﬂc—y|<t7|xo—y|<t

<.
Il
—

m

IN

m

o=yl oo — g1

9 1/2
xII®Aw<@»mh@w@1 ﬁ)
j=1
= Ji+Jo+ Js.
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For J;, we get

m 1/2
|f (W)l dt
S < C bi(y) — (bj)2Q)| =11 / — | dy
(2Q) gljl( ) e |2 =yt \Jjo—yi<t<izo—yl
M f @)l 1 e
< C bi(y) — (b — dy
(2Q) jHl( )= b)) [z =yt z —yl? fzo —yl?

|1/2

C H(b](y) _ (bj)QQ) |f(y)|7" |x0 —x

< dy
0o |1 =yt o — y[?2
S 5 QI f(y)lr
< C / bi(y) — (b;)eg)| S W W)r g,
; 2HIQ\24Q jl;ll( )= b)) |zo — y|nt1/2
< oyt [ k) - 0,):0)] £y
k=1 PQ |j=1
Sl 1/8/
< oy igrt [ Tk - G| dy
k=1 PQ |j=1

1/s
(12wt [ st)

< M T IillsnoMa(£1,)@)

k=1 j=1
< ClbllBaoMs(|f]:)(&).

Similarly, we have J < C||bl|paroMs(|f]r)(Z).
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We now estimate Js3, by the Lemma 3, we gain

Jz <

IN

IN

<

<

m 1/2
|f@)lr|2 — 20l / dt
C bi(y) — (bj)ag)| 2= =0 e
(2Q)° jli[l( )= 0i)za) |[zo —y[" jwo—yl<tja—yl<t
m 1/2
[f @)lr|z — 20| / dt
+C bj(y) — (b; 3 dy
(2Q)° jHl( ) = (1)za) [zo ="\ zo—yi<tlo—yi<t

QM Q"
(y) - (bj)QQ) (’x(] — y’n+1 + ‘-’I}O — y‘n_;'_,y |f(y)‘7“dy

CZ/

2HQ\2HQ |3 1

m

>t qrt [ AT - 00| 1£0)dy
k=1 26+1Q Jj=1

CY @+ 27" [TIbl BaoMs(1£1:)(#)
k=1

j=1
C1Bl| zrroMs(| f1) (&)

This completes the total proof of Theorem 1.

Proof of Theorem 2. We first consider the case m = 1, for 1 < p < oo, Choose s
such that 1 < s < p, by using Theorem 1 and Lemma 1, we may get

1M (12 (D)lellze < CIUEE ) ) # o
CIMa(1 (F)lellze + ClUM(£1)) | e
Oty (el + Cll 1l e
Cll|£1rllze-

i ()l 2o

IA A IA A

When m > 2, we may obtain the conclusion by induction. This finishes the proof.
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