Acta Universitatis Apulensis

No. 24/2010
ISSN: 1582-5329

pp. 119-129

SHARP WEIGHTED INEQUALITIES FOR VECTOR-VALUED MULTILINEAR COMMUTATORS OF MARCINKIEWICZ OPERATOR

FENG QIUFEN

ABSTRACT. In this paper, we prove the sharp inequality for the vector-valued multilinear commutators related to the Marcinkiewicz operator. By using the sharp inequality, we obtain the weighted L^p -norm inequality for the vector-valued multilinear commutators.

2000 Mathematics Subject Classification: 42B20, 42B25.

1. Introduction

Let T be the Calderón-Zygmund singular integral operator, we know that the commutator [b,T](f)=T(bf)-bT(f) (where $b\in BMO(R^n)$) is bounded on $L^p(R^n)$ for $1< p<\infty$ (see [3]). In [9], the sharp estimates for some multilinear commutators of the Calderón-Zygmund singular integral operators are obtained. The main purpose of this paper is to prove a sharp inequality for some vector-valued multilinear commutators related to the Marcinkiewicz operator. By using the sharp inequality, we obtain the weighted L^p -norm inequality for the vector-valued multilinear commutators.

2. Notations and Results

First let us introduce some notations (see [4][9][10]). In this paper, Q will denote a cube of R^n with sides parallel to the axes, and for a cue Q let $f_Q = |Q|^{-1} \int_Q f(z) dz$ and the sharp function of f is defined by

$$f^{\#}(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y) - f_{Q}| dy.$$

It is well-known that(see [4])

$$f^{\#}(x) = \sup_{Q \ni x} \inf_{c \in C} \frac{1}{|Q|} \int_{Q} |f(y) - c| dy.$$

We say that b belongs to $BMO(R^n)$ if $b^\#$ belongs to $L^\infty(R^n)$ and define $||b||_{BMO} = ||b^\#||_{L^\infty}$. If $\overrightarrow{b} = (b_1, \dots, b_m)$, $b_j \in BMO$ for $(j = 1, \dots, m)$, then

$$||\vec{b}||_{BMO} = \prod_{j=1}^{m} ||b_j||_{BMO}.$$

Let M be the Hardy-Littlewood maximal operator, that is that

$$M(f)(x) = \sup_{x \in Q} |Q|^{-1} \int_{Q} |f(y)| dy;$$

we write that $M_p(f) = (M(|f|^p))^{1/p}$ for 0 .

Given a positive integer m and $1 \leq j \leq m$, we denote by C_j^m the family of all finite subsets $\sigma = \{\sigma(1), \cdots, \sigma(j)\}$ of $\{1, \cdots, m\}$ of j different elements. For $\sigma \in C_j^m$, set $\sigma^c = \{1, \cdots, m\} \setminus \sigma$. For $\vec{b} = (b_1, \cdots, b_m)$ and $\sigma = \{\sigma(1), \cdots, \sigma(j)\} \in C_j^m$, set $\vec{b}_{\sigma} = (b_{\sigma(1)}, \cdots, b_{\sigma(j)})$, $b_{\sigma} = b_{\sigma(1)} \cdots b_{\sigma(j)}$ and $||\vec{b}_{\sigma}||_{BMO} = ||b_{\sigma(1)}||_{BMO} \cdots ||b_{\sigma(j)}||_{BMO}$. We denote the Muckenhoupt weights by A_p , let $\Omega \in A_p$ and $1 \leq p < \infty$, ω satisfy

We denote the Muckenhoupt weights by A_p , let $\Omega \in A_p$ and $1 \leq p < \infty$, ω satisfy the inverse Hölder inequality, there exists a constant C and $1 < q < \infty$, for any cube Q, we get(see [10])

$$\left(\frac{1}{|Q|}\int_{Q}\omega(x)^{q}dx\right)^{1/q} \leq \frac{C}{|Q|}\int_{Q}\omega(x)dx.$$

In this paper, we will study some vector-valued multilinear commutators as following.

Definition. Let $0 < \gamma \le 1$ and Ω be homogeneous of degree zero on R^n such that $\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0$. Assume that $\Omega \in Lip_{\gamma}(S^{n-1})$, that is there exists a constant M > 0 such that for any $x, y \in S^{n-1}$, $|\Omega(x) - \Omega(y)| \le M|x - y|^{\gamma}$. Set $b_j(j = 1, \dots, m)$ as a fixed locally integrable function of R^n , then when $1 < r < \infty$, The vector-valued Marcinkiewicz multilinear commutators is defined by

$$|\mu_{\Omega}^{\vec{b}}(f)(x)| = (\sum_{i=1}^{\infty} (\mu_{\Omega}^{\vec{b}}(f_i)(x))^r)^{1/r},$$

where

$$\mu_{\Omega}^{\vec{b}}(f)(x) = \left(\int_0^\infty |F_t^{\vec{b}}(f)(x)|^2 \frac{dt}{t^3}\right)^{1/2}$$

and

$$F_t^{\vec{b}}(f)(x) = \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} \left[\prod_{j=1}^m (b_j(x) - b_j(y)) \right] f(y) dy.$$

Set

$$F_t(f)(x) = \int_{|x-y| < t} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) dy,$$

we also define that

$$\mu_{\Omega}(f)(x) = \left(\int_0^\infty |F_t(f)(x)|^2 \frac{dt}{t^3}\right)^{1/2},$$

which is the Marcinkiewicz operator(see [11]).

Let H be the space $H = \left\{h: ||h|| = \left(\int_0^\infty |h(t)|^2 dt/t^3\right)^{1/2} < \infty\right\}$. Then, it is clear that

$$\mu_{\Omega}(f)(x) = ||F_t(f)(x)|| \text{ and } \mu_{\Omega}^{\tilde{b}}(f)(x) = ||F_t^{\tilde{b}}(f)(x)||.$$

Note that when $b_1 = \cdots = b_m$, $|\mu_{\Omega}^{\vec{b}}(f)(x)|$ is just the m order vector-valued Marcinkiewicz operator multilinear commutators. It is well known that commutators are of great interest in harmonic analysis and have been widely studied by many authors (see [1][4-8][10]). Our main purpose is to establish the sharp inequality for the vector-valued Marcinkiewicz operator multilinear commutators.

Now we state our main results as following.

3. Main Theorem and Proof

First, we will establish the following theorem.

Theorem 1. Let $1 < r < \infty$, $b_j \in BMO(\mathbb{R}^n)$ for $j = 1, \dots, m$. Then for any $1 < s < \infty$, there exists a constant C > 0 such that for any $f \in C_0^{\infty}(\mathbb{R}^n)$ and any $\widetilde{x} \in \mathbb{R}^n$.

$$(|\mu_{\Omega}^{\vec{b}}(f)|_r)^{\#}(\widetilde{x}) \leq C \left(||\vec{b}||_{BMO} M_s(|f|_r)(\widetilde{x}) + \sum_{j=1}^m \sum_{\sigma \in C_j^m} ||\vec{b}_{\sigma}||_{BMO} M_s(|\mu_{\Omega}^{\vec{b}_{\sigma^c}}(f)|_r)(\widetilde{x}) \right).$$

Theorem 2. Let $1 < r < \infty$, $b_j \in BMO(\mathbb{R}^n)$ for $j = 1, \dots, m$. Then $|\mu_{\Omega}^{\vec{b}}|_r$ is bounded on $L^p(\mathbb{R}^n)$ for 1 .

To proof the theorem, we need the following lemmas.

Lemma 1. (see [11]) Let $w \in A_p$ and $1 < r < \infty$, $1 . When <math>\Omega \in Lip_r(S^{n-1})$ for $0 < \gamma \le 1$, then $|\mu_{\Omega}|_r$ is bounded on $L^p(w)$.

Lemma 2. Let $1 < r < \infty$, $b_j \in BMO$ for $j = 1, \dots, k$ and $k \in N$. Then, we have

$$\frac{1}{|Q|} \int_{Q} \prod_{j=1}^{k} |b_{j}(y) - (b_{j})_{Q}| dy \le C \prod_{j=1}^{k} ||b_{j}||_{BMO}$$

and

$$\left(\frac{1}{|Q|} \int_{Q} \prod_{j=1}^{k} |b_{j}(y) - (b_{j})_{Q}|^{r} dy\right)^{1/r} \le C \prod_{j=1}^{k} ||b_{j}||_{BMO}.$$

Proof. For $\sigma \in C_k^m$, where $k \leq m$ and $m \in N$, we have

$$\frac{1}{|Q|} \int_{O} |(b(y) - (b_j)_Q)_{\sigma}| dy \le C||b_{\sigma}||_{BMO}$$

and

$$\left(\frac{1}{|Q|}\int_{Q}|(b(y)-(b_j)_Q)_{\sigma}|^rdy\right)^{1/r}\leq C||b_{\sigma}||_{BMO}.$$

We just need to choose $p_j>1$ and $q_j>1$, where $1\leq j\leq k$, such that $1/p_1+\cdots+1/p_k=1$ and $1/q_1+\cdots+1/q_k=1/r$. After that, using the Hölder's inequality with exponent $1/p_1+\cdots+1/p_k=1$ and $1/q_1+\cdots+1/q_k=1/r$ respectively, we may get the conclusions.

Lemma 3. (see [11]) Let $0 < \gamma \le 1$ and Ω be homogeneous of degree zero on \mathbb{R}^n such that $\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0$. Assume that $\Omega \in Lip_{\gamma}(S^{n-1})$, if $Q = Q(x_0, d), y \in (2Q)^c$, then

$$\left| \frac{\Omega(x-y)}{|x-y|^{n-1}} - \frac{\Omega(x_0-y)}{|x_0-y|^{n-1}} \right| \le C \left(\frac{|x-x_0|}{|x_0-y|^n} + \frac{|x-x_0|^{\gamma}}{|x_0-y|^{n-1+\gamma}} \right).$$

Proof of Theorem 1. It suffices to prove for $f \in C_0^{\infty}(\mathbb{R}^n)$ and some constant C_0 , the following inequality holds:

$$\left(\frac{1}{|Q|}\int_{Q}||\mu_{\Omega}^{\vec{b}}(f)(x)|_{r}-C_{0}|dx\right)\leq C\left(M_{s}(|f|_{r})(\widetilde{x})+\sum_{j=1}^{m}\sum_{\sigma\in C_{j}^{m}}M_{s}(|\mu_{\Omega}^{\vec{b}}(f)|_{r})(\widetilde{x})\right).$$

Fix a cube $Q = Q(x_0, d)$ and $\tilde{x} \in Q$. We write, $f = g + h = g_i + h_i$, where $g_i = f_i \chi_{2Q}$ and $h_i = f_i \chi_{(2Q)^c}$. If let $\tilde{b} = (b_1, ..., b_m)$, where $(b_j)_Q = |Q|^{-1} \int_Q b_j(y) dy$, for $1 \le j \le m$. We have

$$F_t^{\tilde{b}}(f_i)(x) = \int_{|x-y| \le t} \left[\prod_{j=1}^m (b_j(x) - b_j(y)) \right] f_i(y) \frac{\Omega(x-y)}{|x-y|^{n-1}} dy$$

$$= \int_{|x-y| \le t} \left[\prod_{j=1}^m ((b_j(x) - (b_j)_{2Q}) - (b_j(y) - (b_j)_{2Q})) \right] f_i(y) \frac{\Omega(x-y)}{|x-y|^{n-1}} dy$$

$$= \sum_{j=0}^m \sum_{\sigma \in C_j^m} (-1)^{m-j} (b(x) - (b)_{2Q})_{\sigma} \int_{|x-y| \le t} (b(y) - (b)_{2Q})_{\sigma^c} f_i(y) \frac{\Omega(x-y)}{|x-y|^{n-1}} dy$$

$$= (b_1(x) - (b_1)_{2Q}) \cdots (b_m(x) - (b_m)_{2Q}) F_t(f_i)(x)$$

$$+ (-1)^m F_t((b_1 - (b_1)_{2Q}) \cdots (b_m - (b_m)_{2Q}) f_i)(x)$$

$$+ \sum_{j=1}^{m-1} \sum_{\sigma \in C_j^m} (-1)^{m-j} (b(x) - (b)_{2Q})_{\sigma} F_t^{\tilde{b}_{\sigma^c}}(f_i)(x),$$

Then by Minkowski's inequality, we get

$$\frac{1}{|Q|} \int_{Q} ||\mu_{\Omega}^{\vec{b}}(f)(x)|_{r} - |\mu_{\Omega}((b_{1} - (b_{1})_{2Q}) \cdots (b_{m} - (b_{m})_{2Q}))h)(x_{0})|_{r}|dx$$

$$\leq \frac{1}{|Q|} \int_{Q} |||F_{t}^{\vec{b}}(f)(x)||_{r} - ||F_{t}((b_{1} - (b_{1})_{2Q}) \cdots (b_{m} - (b_{m})_{2Q}))h)(x_{0})||_{r}|dx$$

$$\leq \frac{1}{|Q|} \int_{Q} \left(\sum_{i=1}^{\infty} ||F_{t}^{\vec{b}}(f_{i})(x) - F_{t}((b_{1} - (b_{1})_{2Q}) \cdots (b_{m} - (b_{m})_{2Q})h_{i})(x_{0})||^{r} \right)^{1/r} dx$$

$$\leq \frac{1}{|Q|} \int_{Q} \left(\sum_{i=1}^{\infty} ||(b_{1}(x) - (b_{1})_{2Q}) \cdots (b_{m}(x) - (b_{m})_{2Q})F_{t}(f_{i})(x)||^{r} \right)^{1/r} dx$$

$$+ \frac{1}{|Q|} \int_{Q} \left(\sum_{i=1}^{\infty} \sum_{j=1}^{m-1} \sum_{\sigma \in C_{j}^{m}} ||(b(x) - (b)_{2Q})_{\sigma} F_{t}^{\vec{b}_{\sigma^{c}}}(f_{i})(x)||^{r} \right)^{1/r} dx$$

$$+ \frac{1}{|Q|} \int_{Q} \left(\sum_{i=1}^{\infty} ||F_{t}((b_{1} - (b_{1})_{2Q}) \cdots (b_{m} - (b_{m})_{2Q})g_{i})(x)||^{r} \right)^{1/r}$$

$$+ \frac{1}{|Q|} \int_{Q} \left(\sum_{i=1}^{\infty} ||F_{t}((b_{1} - (b_{1})_{2Q}) \cdots (b_{m} - (b_{m})_{2Q})h_{i})(x) \right)$$

$$- F_{t}((b_{1} - (b_{1})_{2Q}) \cdots (b_{m} - (b_{m})_{2Q})h_{i})(x_{0})||^{r} dx$$

$$= I_{1} + I_{2} + I_{3} + I_{4}.$$

For I_1 , by Hölder's inequality with exponent 1/s' + 1/s = 1 and lemma 2, we get

$$I_{1} \leq C \frac{1}{|Q|} \int_{Q} |\prod_{j=1}^{m} (b_{j}(x) - (b_{j})_{2Q})| |\mu_{\Omega}(f)(x)|_{r} dx$$

$$\leq C \left(\frac{1}{|2Q|} \int_{2Q} |\prod_{j=1}^{m} (b_{j}(x) - (b_{j})_{2Q})|^{s'} dx \right)^{1/s'} \left(\frac{1}{|Q|} \int_{Q} |\mu_{\Omega}(f)(x)|_{r}^{s} dx \right)^{1/s}$$

$$\leq C ||\vec{b}||_{BMO} M_{s}(|\mu_{\Omega}(f)|_{r})(\tilde{x}).$$

For I_2 , by Hölder's inequality with exponent 1/s' + 1/s = 1, we have

$$I_{2} = \frac{1}{|Q|} \int_{Q} \sum_{j=1}^{m-1} \sum_{\sigma \in C_{j}^{m}} ||(b(x) - (b)_{2Q})_{\sigma} F_{t}^{\vec{b}_{\sigma^{c}}}(f)(x)||_{r} dx$$

$$\leq \sum_{j=1}^{m-1} \sum_{\sigma \in C_{j}^{m}} \frac{1}{|Q|} \int_{Q} |(b(x) - (b)_{2Q})_{\sigma}||\mu_{\Omega}^{\vec{b}_{\sigma^{c}}}(f)(x)|_{r} dx$$

$$\leq C \sum_{j=1}^{m-1} \sum_{\sigma \in C_{j}^{m}} \left(\frac{1}{|2Q|} \int_{2Q} |(b(x) - (b)_{2Q})_{\sigma}|^{s'} dx \right)^{1/s'} \left(\frac{1}{|Q|} \int_{Q} |\mu_{\Omega}^{\vec{b}_{\sigma^{c}}}(f)(x)|_{r}^{s} dx \right)^{1/s}$$

$$\leq C \sum_{j=1}^{m-1} \sum_{\sigma \in C_{j}^{m}} ||\vec{b}_{\sigma}||_{BMO} M_{s}(|\mu_{\Omega}^{\vec{b}_{\sigma^{c}}}(f)|_{r})(\tilde{x}).$$

For I_3 , we choose some p, such that $1 , by the boundness of <math>|\mu_{\Omega}|_r$ on $L^p(\mathbb{R}^n)$ (see lemma 1) and Hölder's inequality, we gain

$$I_{3} = \frac{1}{|Q|} \int_{Q} ||F_{t}(\prod_{j=1}^{m} (b_{j}(y) - (b_{j})_{2Q})g)(x)||_{r} dx$$

$$\leq \left(\frac{1}{|Q|} \int_{R^{n}} |\mu_{\Omega}(\prod_{j=1}^{m} (b_{j}(y) - (b_{j})_{2Q})f\chi_{2Q})(x)|_{r}^{p} dx\right)^{1/p}$$

$$\leq C \left(\frac{1}{|Q|} \int_{R^{n}} |\prod_{j=1}^{m} (b_{j}(y) - (b_{j})_{2Q})|^{p} |f\chi_{2Q}|_{r}^{p} dx\right)^{1/p}$$

$$\leq C \left(\frac{1}{|2Q|} \int_{2Q} |\prod_{j=1}^{m} (b_{j}(y) - (b_{j})_{2Q})|^{sp/(s-p)} dx\right)^{(s-p)/sp} \left(\frac{1}{|2Q|} \int_{2Q} |f(x)|_{r}^{s} dx\right)^{1/s}$$

$$\leq C ||\vec{b}||_{BMO} M_{s}(|f|_{r})(\tilde{x}).$$

For I_4 , we have

$$||F_{t}(\prod_{j=1}^{m}(b_{j}-(b_{j})_{2Q})h)(x) - F_{t}(\prod_{j=1}^{m}(b_{j}-(b_{j})_{2Q})h)(x_{0})||_{r}$$

$$= \left(\int_{0}^{\infty} \left|\int_{|x-y| \le t} \frac{\Omega(x-y)|h(y)|_{r}}{|x-y|^{n-1}} \left[\prod_{j=1}^{m}(b_{j}(y)-(b_{j})_{2Q})\right] dy - \int_{|x_{0}-y| \le t} \frac{\Omega(x_{0}-y)|h(y)|_{r}}{|x_{0}-y|^{n-1}} \left[\prod_{j=1}^{m}(b_{j}(y)-(b_{j})_{2Q})\right] dy|^{2} \frac{dt}{t^{3}}\right)^{1/2}$$

$$\leq \left(\int_{0}^{\infty} \left[\int_{|x_{0}-y| \le t, |x_{0}-y| \le t} \frac{|\Omega(x-y)||h(y)|_{r}}{|x-y|^{n-1}} \left|\prod_{j=1}^{m}(b_{j}(y)-(b_{j})_{2Q})\right| dy\right|^{2} \frac{dt}{t^{3}}\right)^{1/2}$$

$$+ \left(\int_{0}^{\infty} \left[\int_{|x-y| \ge t, |x_{0}-y| \le t} \frac{|\Omega(x_{0}-y)||h(y)|_{r}}{|x_{0}-y|^{n-1}} \left|\prod_{j=1}^{m}(b_{j}(y)-(b_{j})_{2Q})\right| dy\right|^{2} \frac{dt}{t^{3}}\right)^{1/2}$$

$$+ \left(\int_{0}^{\infty} \left[\int_{|x-y| \le t, |x_{0}-y| \le t} \left|\frac{|\Omega(x-y)|}{|x-y|^{n-1}} - \frac{|\Omega(x_{0}-y)|}{|x_{0}-y|^{n-1}}\right| \right]$$

$$\times \left|\prod_{j=1}^{m}(b_{j}(y)-(b_{j})_{2Q})\right| |h(y)|_{r}dy\right|^{2} \frac{dt}{t^{3}}$$

$$= I_{1} + I_{2} + I_{3}$$

For J_1 , we get

$$\begin{split} J_1 & \leq C \int_{(2Q)^c} \left| \prod_{j=1}^m (b_j(y) - (b_j)_{2Q}) \right| \frac{|f(y)|_r}{|x - y|^{n-1}} \left(\int_{|x - y| \leq t < |x_0 - y|} \frac{dt}{t^3} \right)^{1/2} dy \\ & \leq C \int_{(2Q)^c} \left| \prod_{j=1}^m (b_j(y) - (b_j)_{2Q}) \right| \frac{|f(y)|_r}{|x - y|^{n-1}} \left| \frac{1}{|x - y|^2} - \frac{1}{|x_0 - y|^2} \right|^{1/2} dy \\ & \leq C \int_{(2Q)^c} \left| \prod_{j=1}^m (b_j(y) - (b_j)_{2Q}) \right| \frac{|f(y)|_r}{|x - y|^{n-1}} \frac{|x_0 - x|^{1/2}}{|x - y|^{3/2}} dy \\ & \leq C \sum_{k=1}^\infty \int_{2^{k+1}Q \setminus 2^k Q} \left| \prod_{j=1}^m (b_j(y) - (b_j)_{2Q}) \right| \frac{|Q|^{1/(2n)} |f(y)|_r}{|x_0 - y|^{n+1/2}} dy \\ & \leq C \sum_{k=1}^\infty 2^{-k/2} |2^{k+1}Q|^{-1} \int_{2^{k+1}Q} \left| \prod_{j=1}^m (b_j(y) - (b_j)_{2Q}) \right| |f(y)|_r dy \\ & \leq C \sum_{k=1}^\infty 2^{-k/2} \left(|2^{k+1}Q|^{-1} \int_{2^{k+1}Q} \left| \prod_{j=1}^m (b_j(y) - (b_j)_{2Q}) \right|^{s'} dy \right)^{1/s'} \\ & \leq C \sum_{k=1}^\infty 2^{-k/2} \prod_{j=1}^m ||b_j||_{BMO} M_s(|f|_r)(\tilde{x}) \\ & \leq C \left| |\vec{b}||_{BMO} M_s(|f|_r)(\tilde{x}). \end{split}$$

Similarly, we have $J_2 \leq C||\vec{b}||_{BMO}M_s(|f|_r)(\tilde{x})$.

We now estimate J_3 , by the Lemma 3, we gain

$$J_{3} \leq C \int_{(2Q)^{c}} \left| \prod_{j=1}^{m} (b_{j}(y) - (b_{j})_{2Q}) \right| \frac{|f(y)|_{r}|x - x_{0}|}{|x_{0} - y|^{n}} \left(\int_{|x_{0} - y| \leq t, |x - y| \leq t} \frac{dt}{t^{3}} \right)^{1/2} dy$$

$$+ C \int_{(2Q)^{c}} \left| \prod_{j=1}^{m} (b_{j}(y) - (b_{j})_{2Q}) \right| \frac{|f(y)|_{r}|x - x_{0}|^{\gamma}}{|x_{0} - y|^{n-1+\gamma}} \left(\int_{|x_{0} - y| \leq t, |x - y| \leq t} \frac{dt}{t^{3}} \right)^{1/2} dy$$

$$\leq C \sum_{k=1}^{\infty} \int_{2^{k+1}Q \setminus 2^{k}Q} \left| \prod_{j=1}^{m} (b_{j}(y) - (b_{j})_{2Q}) \right| \left(\frac{|Q|^{1/n}}{|x_{0} - y|^{n+1}} + \frac{|Q|^{\gamma/n}}{|x_{0} - y|^{n+\gamma}} \right) |f(y)|_{r} dy$$

$$\leq C \sum_{k=1}^{\infty} (2^{-k} + 2^{-k\gamma}) |2^{k+1}Q|^{-1} \int_{2^{k+1}Q} \left| \prod_{j=1}^{m} (b_{j}(y) - (b_{j})_{2Q}) \right| |f(y)|_{r} dy$$

$$\leq C \sum_{k=1}^{\infty} (2^{-k} + 2^{-k\gamma}) \prod_{j=1}^{m} ||b_{j}||_{BMO} M_{s}(|f|_{r})(\tilde{x})$$

$$\leq C ||\vec{b}||_{BMO} M_{s}(|f|_{r})(\tilde{x}).$$

This completes the total proof of Theorem 1.

Proof of Theorem 2. We first consider the case m = 1, for 1 , Choose s such that <math>1 < s < p, by using Theorem 1 and Lemma 1, we may get

$$\begin{aligned} |||\mu_{\Omega}^{b_{1}}(f)|_{r}||_{L^{p}} &\leq ||M(|\mu_{\Omega}^{b_{1}}(f)|_{r}||_{L^{p}} \leq C||(|\mu_{\Omega}^{b_{1}}(f)|_{r})^{\#}||_{L^{p}} \\ &\leq C||M_{s}(|\mu_{\Omega}^{b_{1}}(f)|_{r}||_{L^{p}} + C||M_{s}(|f|_{r}))||_{L^{p}} \\ &\leq C||\mu_{\Omega}^{b_{1}}(f)|_{r}||_{L^{p}} + C||f|_{r}||_{L^{p}} \\ &\leq C||f|_{r}||_{L^{p}}. \end{aligned}$$

When $m \geq 2$, we may obtain the conclusion by induction. This finishes the proof.

4. Acknowledgement

The author would like to express his deep gratitude to the referee for his valuable comments and suggestions.

References

- [1] J. Alvarez, R. J. Babgy, D. S. Kurtz and C. Pérez, Weighted estimates for commutators of linear operators, Studia Math., 104(1993), 195-209.
- [2] Alvarez J, Continuity properties for linear commutators of Calderón-Zygmund operators, Collect Math., 1998, 49: 17-31.
- [3] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103(1976), 611-635.
- [4] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math., 16, Amsterdam, 1985.
- [5] G. Hu and D. C. Yang, A variant sharp estimate for multilinear singular integral operators, Studia Math., 141(2000), 25-42.
- [6] L. Z. Liu, *The continuity of commutators on Triebel-Lizorkin spaces*, ntegral Equations and Operator Theory, 49(1)(2004), 65-76.
- [7] L. Z. Liu and B. S. Wu, Weighted boundedness for commutator of Marcinkiewicz integral on some Hardy spaces, Southeast Asian Bull. of Math., 28(2005), 643-650.
- [8] C. Pérez, Endpoint estimate for commutators of singular integral operators, J. Func. Anal., 128(1995), 163-185.
- [9] C. Pérez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65(2002), 672-692.
- [10] E. M. Stein, Harmonic Analysis: real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton NJ, 1993.
- [11] A. Torchinsky and S.Wang, A note on the Marcinkiewicz integral, Colloq. Math., 60/61(1990), 235-243.

FENG Qiufen Changsha Commence and Tourism College Changsha 410004 P. R. of China

email: fengqiufen@126.com