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Abstract. In this paper, we introduce certain classes of analytic functions in
the unit disk. The object of the present paper is to derive some interesting properties
of functions belonging to these classes.
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1.INTRODUTION

Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2

an zn, (1.1)

which are analytic in the unit disc E = {z : z ∈ C, |z| < 1}.Let the functions fi bqe
defined for i = 1, 2,by

fi(z) = z +
∞∑

n=2

an,i zn, (1.2)

The modified Hadamard product(convolution) of f1 and f2 is defined here by

(f1 ∗ f2)(z) = z +
∞∑

n=2

an,1an,2 zn.

Let Pk(ρ) be the class of functions h(z) analytic in E satisfying the properties
h(0) = 1 and

2π∫
0

∣∣∣∣Reh(z)− ρ

1− ρ

∣∣∣∣ dθ ≤ kπ, (1.3)
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where z = reiθ, k ≥ 2 and 0 ≤ ρ < 1. This class has been introduced in
[10]. We note, for ρ = 0, we obtain the class Pk defined and studied in [11], and
for ρ = 0, k = 2, we have the well-known class P of functions with positive real
part. The case k = 2 gives the class P (ρ) of functions with positive real part greater
than ρ. From (1.3) we can easily deduce that h ∈ Pk(ρ) if and only if, there exists
h1, h2 ∈ P (ρ) such that for z ∈ E,

h(z) =
(

k

4
+

1
2

)
h1(z)−

(
k

4
− 1

2

)
h2(z). (1.4)

where hi(z) ∈ P (ρ), i = 1, 2 and z ∈ E.
We have the following classes

Rk(α) =
{

f : f ∈ A and
zf ′(z)
f(z)

∈ Pk(α), z ∈ E, 0 ≤ α < 1
}

,

we note that R2(α) = S∗(α) is the class of starlike functions of order α.

Vk(α) =
{

f : f ∈ A and
(zf ′(z))′

f ′(z)
∈ Pk(α), z ∈ E, 0 ≤ α < 1

}
.

Note that V2(α) = C(α) is the class of convex functions of order α.

Tk(ρ, α) =
{

f : f ∈ A, g ∈ R2(α) and
zf ′(z)
f(z)

∈ Pk(ρ), z ∈ E, 0 ≤ α, ρ < 1
}

.

T ∗
k (ρ, α) =

{
f : f ∈ A, g ∈ V2(α) and

(zf ′(z))′

f(z)
∈ Pk(ρ), z ∈ E, 0 ≤ α, ρ < 1

}
.

In particular, the class T ∗
2 (ρ, α) = C(ρ, α) was introduced by Noor [8] and for

T ∗
2 (0, 0) = C∗ is the class of quasi-convex univalent functions which was first in-

troduced and studied in [7].
It is obvious from the above definition that

f(z) ∈ Vk(α) ⇐⇒ zf ′(z) ∈ Rk(α), (1.5)
f(z) ∈ T ∗

k (ρ, α) ⇐⇒ zf ′(z) ∈ Tk(ρ, α). (1.6)

Let f ∈ A.Denote Dλ : A −→ A the operator defined by

Dλf(z) =
z

(1− z)λ+1
∗ f(z), (λ > −1).
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It is obvious that D0f(z) = f(z), D1f(z) = zf ′(z) and

Dkf(z) =
z(zk−1f(z))(k)

k!
, k ∈ N0 = {0, 1, 2, ...}.

The operator Dkf(z) is called the kth order Ruscheweyh derivative of f.Recently
Noor [6] and Noor [9] defined and studied an integral operator In : A −→ A analo-
gous to Dkf as follows.

Let fn(z) = z
(1−z)n+1 , n ∈ N0 and let f

(−1)
n be defined such that

fn(z) ∗ f (−1)
n (z) =

z

(1− z)2
.

Then

In = f (−1)
n (z) ∗ f =

[
z

(1− z)n+1

](−1)

∗ f.

We note that I0f(z) = zf ′(z) and I1f(z) = f(z).The operator In is called the Noor
integral operator of nth order, see [2, 5].

For any complex numbers a, b, c other than 0,−1,−2... the hypergeometric series
is defined by

2F1(a, b; c; z) = 1 +
ab

c1!
z +

a(a + 1)b(b + 1)
c(c + 1)2!

z2 + .... (1.7)

We note that the series (1.7) converges absolutely for all z so that it represents an
analytic function in E.Also an incomplete beta function φ(a, c, z) is related to the
Gauss hypergeometric function 2F1(a, b; c; z) as

2F1(1, b; c; z) = φ(a, c, z),

and we note that φ(2, 1, z) = z
(1−z)a , where φ(2, 1, z) is the Koebe function. Using

φ(a, c, z) a convolution operator, see [1] was defined by Carlson and Shaffer.We
introduce a function (z 2F1(a, b; c; z))(−1) given by

(z 2F1(a, b; c; z)) ∗ (z2F1(a, b; c; z))(−1) =
z

(1− z)λ+1
, (λ > −1),

and obtain the following linear operator:

Iλ(a, b, c)f(z) = (z 2F1(a, b; c; z))(−1) ∗ f(z), (1.8)

where a, b, c are real numbers other 0,−1,−2,−3, ..., λ > −1, z ∈ E and f ∈ A. The
operator Iλ is known as the generalized Noor integral operator. In particular, with
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b = 1, the operator was studied in [3] for p-valent functions.By some computation
we note that

Iλ(a, b, c)f(z) = z +
∞∑

k=1

(c)k(λ + 1)k

(a)k(b)k(1)k
ak+1z

k=1, (1.9)

where (x)k is the Pochhammer symbol defined by (x)k = x(x + 1)...(x + k − 1),
k = 1, 2, ... and (x)k = 1, k = 0.

From (1.8), we note that

Iλ(a, λ + 1, a)f(z) = f(z), Iλ(a, 1, a)f(z) = zf ′(z).

Also it can easily be verified that

z(Iλ(a, b, c)f(z))′ = (λ + 1)Iλ+1(a, b, c)f(z)− λIλ(a, b, c)f(z). (1.10)
z(Iλ(a + 1, b, c)f(z))′ = aIλ(a, b, c)f(z)− (a− 1)Iλ(a + 1, b, c)f(z). (1.11)

We define the following subclasses.
Definition 1.1. Let f ∈ A.Then f ∈ Rk(a, b, c, λ, α) if and only if Iλ(a, b, c)f(z) ∈

Rk(α), for z ∈ E.
Definition 1.2. Let f ∈ A.Then f ∈ Vk(a, b, c, λ, α) if and only if Iλ(a, b, c)f(z) ∈

Vk(α), for z ∈ E.
Definition 1.4. Let f ∈ A.Then f ∈ Tk(a, b, c, λ, ρ, α) if and only if Iλ(a, b, c)f(z)

∈ Tk(ρ, α), for z ∈ E.
Definition 1.5. Let f ∈ A.Then f ∈ T ∗

k (a, b, c, λ, ρ, α) if and only if Iλ(a, b, c)f(z)
∈ T ∗

k (ρ, α), for z ∈ E.
We shall .need the following result.
Lemma 1.1 [4].Let u = u1 + iu2, v = v1 + iv2 and Ψ (u, v) be a complex valued

function satisfying the conditions: (i) . Ψ(u, v) is continuous in a domain D ⊂ C2,
(ii) . (1, 0) ∈ D and Re Ψ (1, 0) > 0, (iii) . Re Ψ (iu2, v1) ≤ 0, whenever (iu2, v1) ∈ D
and v1 ≤ −1

2

(
1 + u2

2

)
.

If h (z) = 1 + c1z + · · · is a function analytic in E such that (h(z), zh′(z)) ∈ D and
Re {Ψ(h(z), zh′(z))} > 0 for z ∈ E, then Re h(z) > 0 in E.

2.Main results

Theorem 2.1. Let f ∈ A. Then

Rk(a, b, c, λ + 1, α) ⊂ Rk(a, b, c, λ, α),

where α is given by

α =
2

(2λ + 1) +
√

(2λ + 1)2 + 8
. (2.1)
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Proof. Let f ∈ Rk(a, b, c, λ + 1, α) and let

z(Iλ(a, b, c)f(z))′

Iλ(a, b, c)f(z)
= p(z) = (

k

4
+

1
2
)p1(z)− (

k

4
− 1

2
)p2(z). (2.2)

Then p(z) is analytic in E with p(0) = 1. Some computation and use of (1.10) yields

z(Iλ+1(a, b, c)f(z))′

Iλ+1(a, b, c)f(z)
=

{
p(z) +

zp′(z)
p(z) + λ

}
∈ Pk, z ∈ E.

Let

Φλ(z) =
∞∑

j=1

λ + j

λ + 1
zj =

λ

λ + 1
z

(1− z)
+

1
λ + 1

z

(1− z)2
.

Then

p(z) ∗ Φλ(z) = p(z) +
zp′(z)

p(z) + λ
.

= (
k

4
+

1
2
) {p1(z) ∗ Φλ(z)} − (

k

4
− 1

2
) {p2(z) ∗ Φλ(z)}

= (
k

4
+

1
2
)
[
p1(z) +

zp′1(z)
p1(z) + λ

]
− (

k

4
− 1

2
)
[
p2(z) +

zp′2(z)
p2(z) + λ

]
,

and implies that [
pi(z) +

zp′i(z)
pi(z) + λ

]
∈ P, i = 1, 2, z ∈ E.

We want to show that pi(z) ∈ P (α), where α is given by (2.1) and this will show
that p ∈ Pk for z ∈ E. Let

pi(z) = (1− α)hi(z) + α, i = 1, 2.

Then [
(1− α)hi(z) + α +

(1− α)zh′i(z)
hi(z) + α + λ

]
∈ P.

We form the functional Ψ(u, v) by choosing u = hi(z), v = zh′i(z).

Ψ(u, v) =
{

(1− α)u + α +
(1− α)v

(1− α)u + α + λ

}
.

The first two conditions of Lemma 1.1 are clearly satisfied.We verify the condition
(iii) as follows.

Re{Ψ(iu2
2, v1)} = α +

{
(1− α)(α + λ)v1

(α + λ)2 + (1− α)2u2
2

}
.
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By putting v ≤ − (1+u2
2)

2 , we obtain

Re{Ψ(iu2
2, v1)} ≤ α− 1

2

{
(1− α)(α + λ)(1 + u2

2)
(α + λ)2 + (1− α)2u2

2

}
.

=
2α(α + λ)2 + 2α(1− α)2u2

2 − (1− α)(α + λ)− (1− α)(α + λ)u2
2

2{(α + λ)2 + (1− α)2u2
2}

=
A + Bu2

2

2C
,

where

A = 2α(α + λ)2 − (1− α)(α + λ),
B = 2α(1− α)2 − (1− α)(α + λ),
C = (α + λ)2 + (1− α)2u2

2 > 0.

We notic that Re{Ψ(iu2
2, v1)} ≤ 0 if and only if A ≤ 0, B ≤ 0. From A ≤ 0, we

obtain α as given by (2.1) and B ≤ 0 gives us 0 ≤ ρ < 1. Therefore applying Lemma
1.1, hi ∈ P, i = 1, 2 and consequently h ∈ Pk(ρ) for z ∈ E.This completes the proof.

Theorem 2.2. For λ > −1,

Vk(a, b, c, λ + 1, 0) ⊂ Vk(a, b, c, λ, α),

where α is given by (2.1).
Proof. Let f ∈ Vk(a, b, c, λ + 1, 0).Then Iλ+1(a, b, c)f(z) ∈ Vk(0) = Vk and

by (1.5), z(Iλ+1(a, b, c)f(z))′ ∈ Rk(0) = Rk.This implies that Iλ+1(a, b, c)(zf ′(z) ∈
Rk ⇒ zf ′(z) ∈ Rk(a, b, c, λ+1, 0) ⊂ Rk(a, b, c, λ, α). Consequently f ∈ Vk(a, b, c, λ, α),
where α is given by (2.1).

Theorem 2.3. Let λ > −1. Then

Tk(a, b, c, λ + 1, ρ, 0) ⊂ Tk(a, b, c, λ, γ, α),

where α is given by (2.1) and γ ≤ ρ is defined in the proof.
Proof. Let f ∈ Tk(a, b, c, λ + 1, ρ, 0).Then there exist g ∈ R2(a, b, c, λ + 1, ρ, 0)

such that
z(Iλ+1(a, b, c)f(z))′

Iλ+1(a, b, c)g(z)
∈ Pk(ρ), for z ∈ E, 0 ≤ ρ < 1.

Let

z(Iλ(a, b, c)f(z))′

Iλ(a, b, c)g(z)
= (1− γ)p(z) + γ

= (
k

4
+

1
2
){(1− γ)p1(z) + γ} − (

k

4
− 1

2
){(1− γ)p2(z) + γ},
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where p(0) = 1, and p(z) is analytic in E.Making use of (1.10) and Theorem 2.1
with k = 2, we have{

z(Iλ+1(a, b, c)f(z))′

Iλ+1(a, b, c)g(z)
− ρ

}
(2.3)

=
{

(1− γ)p(z) + (γ − ρ) +
(1− γ)zp′(z)

(1− α)q(z) + α + λ

}
∈ Pk,

and q ∈ P, where

(1− α)q(z) + α =
z(Iλ(a, b, c)g(z))′

Iλ(a, b, c)g(z)
, z ∈ E.

Using (1.4) we form the functional ϕ(u, v) by taking u = u1 + iu2 = pi(z), v =
v1 + iv2 = zp′i(z) in (2.3) as

ϕ(u, v) = (1− γ)u + (γ − ρ) +
(1− γ)v

(1− α)q(z) + α + λ
. (2.4)

It can be easily seen that the function ϕ(u, v) defined by (2.4) satisfies the conditions
(i) and (ii) of Lemma 1.1.To verify the condition (iii), we proceed with q(z) =
q1 + iq2, as follows;

Re {ϕ(iu2, v1)} = (γ − ρ) + Re
{

(1− γ)v1

(1− α)(q1 + iq2) + α + λ

}
= (γ − ρ) +

(1− γ)(1− α)v1q1 + (1− γ)(α + λ)v1

[(1− α)q1 + α + λ]2 + (1− α)2q2
2

= (γ − ρ)− 1
2

(1− γ)(1− α)(1 + u2
2)q1 + (1− γ)(α + λ)(1 + u2

2)
[(1− α)q1 + α + λ]2 + (1− α)2q2

2

≤ 0, γ ≤ ρ < 1.

Therefore applying Lemma 1.1, pi ∈ P, i = 1, 2 and consequently p ∈ Pk and thus
f ∈ Tk(a, b, c, λ, γ, α).

Using the same technique and relation (1.6) with Theorem 2.3, we have the
following result.

Theorem 2.4. For λ > −1,

T ∗
k (a, b, c, λ + 1, ρ, α) ⊂ T ∗

k (a, b, c, λ, ρ, α),

where γ and α are given in Theorem 2.3.
We note that for different choices of parameters a, b, c, k and λ we obtain several

intersting special cases for the result proved in this paper.
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