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ON APPROXIMATE FUZZY MAPS
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Abstract. The aim of this paper is study of fuzzy (weak, strong) forms of
β-irresoluteness and β-closure via the concept of fuzzy gβ-closed sets (gFβ-closed
sets) which we call them ap-Fβ-irresolute, ap-Fβ-closed and contra-Fβ-irresolute.
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1. Introduction and preliminaries

The concepts of weak and strong forms of β-irresoluteness and β-closure via the
concept of gβ-closed sets are introduced and are called them called ap-β-irresolute,
ap-β-closed and contra β-irresolute maps [2]. In this paper, we introduce fuzzy
(weak, strong) forms of β-irresoluteness called ap-Fβ-irresoluteness and ap-Fβ-closedness
by using gFβ-closed sets and obtain some basic properties of such maps. Also we
present a new generalization of contra fuzzy β-irresoluteness. A subset A of a fuzzy
topological space X is called fuzzy β-open if A ⊆ clintcl(A), where cl(A) and int(A),
the closure and the interior of A respectively. The β-interior of A is the union of
all fuzzy β-open sets contained in A and denoted by βint(A). The family of all
fuzzy β-open sets in X is denoted by FβO(X, T ). A fuzzy set A is defined by
A = {(x,MA((x)) | x ∈ A,MA(x) ∈ [0, 1]}, where MA(x) is called membership
function MA(x) specifies the grade or degree to which any x in A.

Definition 1.1. A fuzzy topology is a family T of fuzzy sets in X which satisfies
the following conditions

1- ∅, X ∈ T ,
2- If A,B ∈ T , then A ∩B ∈ T ,
3- If Ai ∈ T for each i ∈ I, then

⋃
i∈I Ai ∈ T . The pair (X, T ) is a fuzzy

topological space. Every member of T is called an open fuzzy set, and the complement
of an open fuzzy set is called a closed fuzzy set.
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Definition 1.2. Let A be a fuzzy set in X and T a fuzzy topology on X. Then the
induced fuzzy topology on A is the family of a fuzzy set of A which are intersections
with an open fuzzy sets in X. The induced fuzzy topology is denoted by TA and the
pair (A, TA) is called a fuzzy subspace of (X, T ).

Definition 1.3. A fuzzy set A is called a fuzzy pre-open (P-open) set of X if
A ⊆ intcl(A).

Definition 1.4. A subset F of (X, T ) is called generalized fuzzy β-closed (briefly
gFβ-closed) if βcl(f) ⊆ O whenever F ⊆ O and O is fuzzy β-open in (X, T ). A
subset B of (X, T ) is called generalized fuzzy β-open (briefly gFβ-open) in (X, T ) if
its complement Bc = X −B is gFβ-closed

Definition 1.5. A map f : (X, T ) → (Y, is called
1- Fuzzy β-irresolute if for each V ∈ FβO(Y, δ), f−1(V ) ∈ FβO(X, T ).
2- Fuzzy pre-β-closed (resp. Fuzzy pre-β-open) if for every fuzzy β-closed (resp.

Fuzzy β-open) set B of (X, T ) if f(B) is fuzzy β-closed (resp. Fuzzy β-open) in
(Y, δ).

3- Constra fuzzy β-closed if f(U) is fuzzy β-open in Y for each fuzzy closed set
U of X.

Definition 1.6. A mapping f : (X, T ) → (Y, δ) is called fuzzy contra β-continuous
if f−1(O) is fuzzy β-closed in (X, T ) for each fuzzy open set O of (Y, δ).

2. Ap-FUZZY (β-IRRESOLUTE , β-CLOSED) AND CONTRA FUZZY β-
IRRESOLUTE MAPS

Definition 2.1. A map f : (X, T ) → (Y, δ) is called approximately fuzzy β-irresolute
(briefly ap-Fβ-hence irresolute), if βcl(F ) ⊆ f−1(O), whenever O is a fuzzy β-open
subset of (Y, δ), F is a gFβ-closed subset of (X, T ) and F ⊆ f−1(O).

Example 2.2. Let X = {a, b}, T = {∅, A, X}, A = {(a, 3/4), (b, 1)}, Y = {x, y}
and σ = {∅, Y }. Suppose f : X → Y , define f(a) = x and f(b) = y, hence f is
ap-Fβ-irresolute.

Definition 2.3. A map f : (X, T ) → (Y, δ) is called approximately fuzzy β-closed
(briefly ap-Fβ-closed), if f(B) ⊆ int(A), whenever A is a fuzzy gβ-open subset of
(Y, δ), B is a fuzzy β-closed subset of (X, T ) and f(B) ⊆ A.
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Example 2.4. Let X = {a, b} and T = {∅, A, X}, A = {(a, 3/4), (b, 1)} and
f : X → X. Define f(a) = b and f(b) = a, hence f is ap-Fβ-closed.

Theorem 2.5.
(1) A map f : (X, T ) → (Y, δ) is ap-Fβ-irresolute if f−1(O) is fuzzy β-closed in

(X, T ) for every O ∈ FβO(Y, δ).
(2) A map f : (X, T ) → (Y, δ) is ap-Fβ-closed if f(B) ∈ FβO(Y, δ) for every

fuzzy β-closed subset B of (X, T ).

Proof. (1) Let F ⊆ f−1(O), where O ∈ FβO(Y, δ) and F is a gFβ-closed subset of
(X, T ), we get that βcl(F ) ⊆ cl(f−1(O)) = f−1(O). Thus f is ap-Fβ-irresolute.

(2) Let f(B) ⊆ A, where B is a fuzzy β-closed subset of (X, T ) and A is a
gF-β-open subset of (Y, δ). Therefore βint(f(B)) ⊆ int(A), now f(B) ∈ FβO(Y, δ),
we get that f(B) ⊆ βint(A). Thus f is ap-Fβ-closed.

Corollary 2.6.
1- Every Fβ-irresolute mapping is ap-Fβ-irresolute.
2- Every fuzzy pre-β-closed mapping is ap-Fβ-closed.

By the following example we show that the converse of above theorem is not true

Example 2.7. Let X = {−1, 1} and T = {∅, A, X}, where A = {(−1, 1)}. Define
f(−1) = 1, f(1) = −1. Since the image of every fuzzy β-closed set is fuzzy β-open,
then f is ap-Fβ-closed (similarly, since the inverse image of every fuzzy β-open set is
fuzzy β-closed, then f is ap-Fβ-irresolute). However Ac = {(1, 1)} is fuzzy β-closed
(X, T ). (resp. A = {(−1, 1)} is fuzzy β-open but f(Ac) is not fuzzy β-closed), (resp.
f−1(A)) is not fuzzy β-open) in (X, T ). Therefore f is not fuzzy pre-β-closed (resp.
f is not fuzzy β-irresolute).

In the following results, the converse of (1) and (2) in Theorem 2.5 are true under
the certain conditions.

Theorem 2.8. Let f : (X, T ) → (Y, δ) be a mapping
1- All subsets of (X, T ) are fuzzy clopen and f is ap-Fβ-irresolute, then f−1(O)

is Fβ-closed in (X, T ) for any O ∈ FβO(Y, δ).
2- All subsets of (Y, δ) be fuzzy clopen and f is ap-Fβ-closed, then f(B) ∈

FβO(Y, δ) for every fuzzy β-closed subset B of X.

Proof. Let all subsets of (X, T ) be fuzzy clopen and f be ap-Fβ-irresolute. Now, let
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A ⊆ X be such that A ⊆ Q where Q ∈ FβO(X, T ), βcl(A) ⊆ βcl(Q) ⊆ Q. Hence A
is gFβ-closed, therefore all subsets of X are gFβ-closed subsets of X.

1- Let O ∈ FβO(Y, δ). We get that f−1(O) ⊆ X, f−1(O) is gFβ-closed
f−1(O) ⊆ f−1(O) and f is ap-Fβ-irresolute, βcl(f−1(O)) ⊆ f−1(O) also f−1(O) ⊆
βcl(f−1(O)), then we get that f−1(O) = βcl(f−1(O)), f−1(O) is fuzzy β-closed in
X.

2- By above all subset of (Y, δ) is gFβ-open and let B be fuzzy β-closed in X.
Therefore f(B) is gFβ subset of Y , f(B) ⊆ f(B) and f is ap-Fβ-closed, hence
f(B) ⊆ βint(f(B)), therefore f(B) is fuzzy β-open.

Corollary 2.9. Let f : (X, T ) → (Y, δ) be a mapping
1- Let all subsets of (X, T ) be clopen, then f is ap-Fβ-irresolute iff f is fuzzy

β-irresolute.
2- Let all subsets of (Y, δ) be clopen, then f is ap-Fβ-closed iff f is fuzzy pre-β-

closed.

Definition 2.10. A mapping f : (X, T ) → (Y, δ) is called fuzzy contra β-irresolute
if f−1(O) is fuzzy β-closed in (X, T ) for each O ∈ FβO(Y, δ).

Definition 2.11. A mapping f : (X, T ) → (Y, δ) is called fuzzy contra pre β-closed
if f(O) is fuzzy β-open in (Y, δ) for each fuzzy β-closed O of X.

Remark 2.12. In fact, fuzzy contra β-irresoluteness and fuzzy β-irresoluteness are
not independent notions. Example 2.8 shows that the fuzzy contra β-irresoluteness
does not imply fuzzy β-irresoluteness. While the converse is shown in the following
example.

Example 2.13. Let X = {a, b, c} and T = {∅, A, B,X} where A = {(a, 1)} and
B = {(a, 1), (b, 1)}. Define f(x) = x, ∀x ∈ X, f fuzzy β-irresolute but not fuzzy
contra β-irresoluteness

Proposition 2.14. Every fuzzy contra β-irresolute is fuzzy contra β-continuous.

The converse of Proposition 2.14 is not true.

Example 2.15. Let X = {a, b, c}, T = {∅, A, B,C} where A = {(a, 1)}, B =
{(b, 1)}, C = {(a, 1), (b, 1)} and Y = {p, q}, δ = {∅, P, Y } where P = {(p, 1)} and
f : (X, T ) → (Y, δ). Defined by f(a) = p, f(b) = f(c) = q. Then f is fuzzy contra
β-continuous, but f is not fuzzy contra β-irresolute.
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Definition 2.16. A mapping f : (X, T ) → (Y, δ) is called fuzzy perfectly contra
β-irresolute if the inverse image of every fuzzy β-open set in Y is fuzzy β-clopen in
X.

Proposition 2.17.
1- Let f : (X, T ) → (Y, δ) and g : (Y, δ) → (Z, γ) be two fuzzy perfectly contra

β-irresolute, then g ◦ f is fuzzy perfectly contra β-irresolute.
2- Let f : (X, T ) → (Y, δ) be fuzzy contra β-irresolute and g : (Y, δ) → (Z, γ) be

fuzzy β-irresolute, then g ◦ f is fuzzy contra β-irresolute.

Theorem 2.18. Every fuzzy perfectly contra β-irresolute is fuzzy contra β-irresolute
and fuzzy β-irresolute.

Remark 2.19. The converse of 2.18 is not true. In Example 2.8 is fuzzy contra
β-irresolute which is not fuzzy perfectly contra β-irresolute and in Example 2.14
which is fuzzy β-irresolute, but is not fuzzy perfectly contra β-irresolute.

Theorem 2.20. Let f:(X, T )β(Y, δ) be a mapping. The following conditions are
equivalent:

1- f is fuzzy perfectly contra β-irresolute.
2- f is fuzzy contra β-irresolute and fuzzy β-irresolute.

Theorem 2.21. If a mapping f : (X, T ) → (Y, δ) is fuzzy β-irresolute and ap-Fβ-
closed, then f−1(A) is gFβ-closed (resp. gFβ-open) whenever A is gFβ-closed (resp.
gFβ-open) subset of (Y, δ).

Proof. Let A be gFβ-closed subset of (Y, δ). Let f−1(A) ⊆ O where O ∈
FβO(X, T ). Taking complements we obtain Oc ⊆ f−1(Ac) or f(Oc) ⊆ Ac. Since f is
gFβ-closed, then f(Oc) ⊆ βint(Ac) = (βcl(A))c. It follows that Oc ⊆ (f−1(βcl(A))c)
and hence f−1(βcl(A)) ⊆ O. Since f is fuzzy β-irresolute f−1(βcl(A)) is fuzzy β-
closed. We have βcl(f−1(A)) ⊆ βcl(f−1(βcl(A))) = f−1(βcl(A)) ⊆ O. Therefore
f−1(A) is gFβ-closed.

Theorem 2.22. If f : (X, T ) → (Y, δ) is ap Fβ-irresolute and fuzzy pre-β-closed,
then for every gFβ-closed F of (X, T ), f(F ) is a gFβ-closed subset of (Y, δ).

Proof. Let F be gFβ-closed subset of (X, T ) and f(F ) ⊆ O where O ∈ FβO(Y, δ).
Then F ⊆ f−1(O), f is ap-Fβ-irresolute, βcl(F ) ⊆ f−1(O) and f(βcl(F )) ⊆ O.
Therefore βcl(f(F )) ⊆ βcl(βcl(f(F ))) = βcl(f(F )) ⊆ O.
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Theorem 2.23. Let f : (X, T ) → (Y, δ) and g : (Y, δ) → (Z, γ) be two mappings.
Then

1- g ◦ f is ap-Fβ-closed if f is fuzzy pre-β-closed and g is ap-Fβ-closed.
2- g ◦ f is ap-Fβ-closed if f is ap-Fβ-closed and g is is fuzzy pre-β-open, g−1

preserves gFβ-open sets.
3- g ◦ f is ap-Fβ-irresolute if f is ap-Fβ-irresolute and g is Fβ-irresolute.

Theorem 2.24.
1- If f : (X, T ) → (Y, δ) is ap Fβ-closed and A is fuzzy β-closed set of (X, T ),

then the restriction fA : (A, TA) → (Y, δ) is ap-Fβ-closed.
2- If f : (X, T ) → (Y, δ) is ap Fβ-irresolute and A is fuzzy open set, gFβ-closed

subset of (X, T ), then the restriction fA : (A, TA) → (Y, δ) is ap-Fβ-irresolute.

Proof.
1- Let H be fuzzy β-closed subset of (A, TA) and O is a gFβ-open subset of (Y, δ)

for which fA(H) ⊆ O. H is fuzzy β-closed set of (X, T ), since A is a fuzzy β-closed
set of (X, T ). Then fA(H) = f(H) ⊆ O we have fA(H) ⊆ βint(O). Thus fA is an
ap-Fβ-closed mapping.

2- Let F be a gFβ-closed subset relative to A and G is an fuzzy β-open subset of
(Y, δ) for which F ⊆ f−1

A (G) = f−1(G) ∩ A, F is gFβ-closed subset of (X, T ), since
f is ap Fβ-irresolute, then βcl(F ) ⊆ f−1(G). We get that βcl(F )∩A ⊆ f−1(G)∩A.
Now βcl(F ) ∩A = βclA(F ) ⊆ f−1(G). Thus fA is ap-Fβ-irresolute.
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