INTEGRAL OPERATORS ON A CERTAIN CLASS OF UNIVALENT FUNCTIONS

Virgil Pescar

ABSTRACT. In this work is considered the class \mathcal{T}_2 of univalent functions defined by the condition $\left|\frac{z^2f'(z)}{f^2(z)}-1\right|<1$ for |z|<1, where $f(z)=z+a_3z^3+...$ is analytic in the open unit disk $\mathcal{U}=\{z\in\mathbb{C}:|z|<1\}$. The integral operators $G_\gamma,\,J_\gamma,\,J_{\gamma_1,\gamma_2,...,\gamma_n},\,D_{\alpha,\beta},\,L_{\alpha,\beta},\,K_{\gamma_1,\gamma_2,...,\gamma_n}$ and $H_{\gamma_1,\gamma_2,...,\gamma_n,\beta,\delta}$, for the functions $f\in\mathcal{T}_2$ are considered. In the present paper we obtain univalence conditions of these integral operators.

 $2000\ Mathematics\ Subject\ Classification:\ 30C45.$

Key words and phrases: Integral operator, univalence.

1. Introduction

Let \mathcal{A} be the class of the functions f which are analytic in the open unit disk $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$ and f(0) = f'(0) - 1 = 0.

We denote by S the class of the functions $f \in A$ which are univalent in U. We consider the integral operators

$$G_{\gamma}(z) = \int_{0}^{z} \left(\frac{f(u)}{u}\right)^{\frac{1}{\gamma}} du, \qquad (1.1)$$

$$J_{\gamma}(z) = \left[\frac{1}{\gamma} \int_{0}^{z} u^{-1} \left(f(u)\right)^{\frac{1}{\gamma}} du\right]^{\gamma}, \qquad (1.2)$$

$$J_{\gamma_{1},\gamma_{2},...,\gamma_{n}}(z) = \left[\sum_{j=1}^{n} \frac{1}{\gamma_{j}} \int_{0}^{z} u^{-1} \prod_{j=1}^{n} (f_{j}(u))^{\frac{1}{\gamma_{j}}} du\right]^{\frac{1}{\sum_{j=1}^{n} \frac{1}{\gamma_{j}}}},$$
 (1.3)

$$D_{\alpha,\beta}(z) = \left[\beta \int_{0}^{z} u^{\beta-1} \left(\frac{f(u)}{u} \right)^{\frac{1}{\alpha}} du \right]^{\frac{1}{\beta}}, \tag{1.4}$$

$$L_{\alpha,\beta}(z) = \left[\beta \int_{0}^{z} u^{\beta-1} \prod_{j=1}^{n} \left(\frac{f_{j}(u)}{u}\right)^{\frac{1}{\alpha}} du\right]^{\frac{1}{\beta}}, \tag{1.5}$$

$$K_{\gamma_1, \gamma_2, \dots, \gamma_n}(z) = \int_0^z \prod_{j=1}^n \left(\frac{f_j(u)}{u}\right)^{\frac{1}{\gamma_j}} du,$$
 (1.6)

for $f \in \mathcal{A}$, α, β, γ complex numbers, $\alpha \neq 0$, $\beta \neq 0$, $\gamma \neq 0$ and $f_j \in \mathcal{A}$, γ_j complex numbers, $\gamma_j \neq 0$, $j = \overline{1, n}$.

In [1], [2], [4], [7], [8], [9], [10], [11] we have certain the univalence conditions of these integral operators.

We define a general integral operator

$$H_{\gamma_1,\gamma_2,\dots,\gamma_n,\beta,\delta}(z) = \left[\beta\delta \int_0^z u^{\beta\delta-1} \prod_{j=1}^n \left(\frac{f_j(u)}{u}\right)^{\frac{1}{\gamma_j}} du\right]^{\frac{1}{\beta\delta}},\tag{1.7}$$

for $f_j \in \mathcal{A}$, β , δ , γ_j complex numbers, $\beta \delta \neq 0$, $\gamma_j \neq 0$, $j = \overline{1, n}$, $n \in \mathbb{N} - \{0\}$.

For β , δ , γ_j , $n \in \mathbb{N} - \{0\}$, $j = \overline{1, n}$, in the particular cases, from (1.7) we obtain the integral operators G_{γ} , J_{γ} , $J_{\gamma_1,\gamma_2,...,\gamma_n}$, $D_{\alpha,\beta}$, $L_{\alpha,\beta}$, $K_{\gamma_1,\gamma_2,...,\gamma_n}$.

2. Preliminary results

We need the following theorems.

Theorem 2.1. [6]. Let α be a complex number, $\operatorname{Re}\alpha > 0$ and $f \in \mathcal{A}$. If

$$\frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1, \tag{2.1}$$

for all $z \in \mathcal{U}$, then for any complex number β , $\operatorname{Re}\beta \geq \operatorname{Re}\alpha$, the function

$$F_{\beta}(z) = \left[\beta \int_{0}^{z} u^{\beta - 1} f'(u) du\right]^{\frac{1}{\beta}}$$

$$(2.2)$$

is in the class S.

Theorem 2.2. (Schwarz [3]). Let f be the function regular in the disk $\mathcal{U}_R = \{z \in \mathbb{C} : |z| < R\}$ with |f(z)| < M, M fixed. If f(z) has in z = 0 one zero with multiply $\geq m$, then

$$|f(z)| \le \frac{M}{R^m} |z|^m, \ (z \in \mathcal{U}_R), \tag{2.3}$$

the equality (in the inequality (2.3) for $z \neq 0$) can hold only if

$$f(z) = e^{i\theta} \frac{M}{R^m} z^m,$$

where θ is constant.

Theorem 2.3. [5]. Assume that the function $f \in A$ satisfies the condition

$$\left| \frac{z^2 f'(z)}{f^2(z)} - 1 \right| < 1, \quad (z \in \mathcal{U}),$$
 (2.4)

then the function f is univalent in \mathcal{U} .

3. Main results

Theorem 3.1. Let γ_j , α complex numbers, $\gamma_j \neq 0$, $j = \overline{1, n}$, $\operatorname{Re}\alpha > 0$, M_j positive real numbers and $f_j \in \mathcal{T}_2$, $f_j(z) = z + \sum_{k=3}^{\infty} a_{kj} z^k$, $j = \overline{1, n}$, $n \in \mathbb{N} - \{0\}$.

$$|f_j(z)| \le M_j, \quad (j = \overline{1, n}; \ z \in \mathcal{U})$$
 (3.1)

and

$$\sum_{j=1}^{n} \frac{2M_j + 1}{|\gamma_j|} \le \operatorname{Re}\alpha,\tag{3.2}$$

then for any complex numbers β and δ , $\operatorname{Re}\beta\delta \geq \operatorname{Re}\alpha$, the function

$$H_{\gamma_1,\gamma_2,\dots,\gamma_n,\beta,\delta}(z) = \left\{ \beta \delta \int_0^z u^{\beta \delta - 1} \left(\frac{f_1(u)}{u} \right)^{\frac{1}{\gamma_1}} \dots \left(\frac{f_n(u)}{u} \right)^{\frac{1}{\gamma_n}} du \right\}^{\frac{1}{\beta \delta}}$$
(3.3)

is in the class S.

Proof. We consider the function

$$h(z) = \int_{0}^{z} \left(\frac{f_1(u)}{u}\right)^{\frac{1}{\gamma_1}} \dots \left(\frac{f_n(u)}{u}\right)^{\frac{1}{\gamma_n}} du.$$
 (3.4)

The function h is regular in \mathcal{U} .

We have

$$\left| \frac{zh''(z)}{h'(z)} \right| = \sum_{j=1}^{n} \frac{1}{|\gamma_j|} \left| \frac{zf'_j(z)}{f_j(z)} - 1 \right|, \ (z \in \mathcal{U}).$$
 (3.5)

We obtain

$$\left| \frac{zf'_{j}(z)}{f_{j}(z)} - 1 \right| \leq \left| \frac{z^{2}f'_{j}(z)}{f_{j}^{2}(z)} \right| \left| \frac{f_{j}(z)}{z} \right| + 1 \leq$$

$$\leq \left| \frac{z^{2}f'_{j}(z)}{f_{j}^{2}(z)} - 1 \right| \frac{|f_{j}(z)|}{|z|} + \frac{|f_{j}(z)|}{|z|} + 1, \ (j = \overline{1, n}; \ z \in \mathcal{U}). \tag{3.6}$$

Since $f_j \in \mathcal{T}_2$ and by Theorem 2.2, from (3.6) we get

$$\left| \frac{zf_j'(z)}{f_j(z)} - 1 \right| \le 2M_j + 1 \left(j = \overline{1, n}; \ z \in \mathcal{U} \right). \tag{3.7}$$

From (3.5) and (3.7) we obtain

$$\left| \frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zh''(z)}{h'(z)} \right| \le \frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \sum_{j=1}^{n} \frac{2M_j + 1}{|\gamma_j|}, \ (z \in \mathcal{U})$$
 (3.8)

and hence, by (3.2) we have

$$\frac{1 - |z|^{\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zh''(z)}{h'(z)} \right| \le 1, \tag{3.9}$$

for all $z \in \mathcal{U}$.

So, by Theorem 2.1, the integral operator $H_{\gamma_1,\gamma_2,\dots,\gamma_n,\beta,\delta}$ is in the class \mathcal{S} .

Corollary 3.2. Let γ_j , α complex numbers, $\operatorname{Re}\gamma_j \neq 0$, $j = \overline{1,n}$, $\sum_{j=1}^n \operatorname{Re}\frac{1}{\gamma_j} \geq \operatorname{Re}\alpha > 0$, M_j positive real numbers and $f_j \in \mathcal{T}_2$, $f_j(z) = z + a_{3j}z^3 + ...$, $j = \overline{1,n}$, $n \in \mathbb{N} - \{0\}$.

$$|f_i(z)| \le M_i, \quad (j = \overline{1, n}; \ z \in \mathcal{U})$$
 (3.10)

and

$$\sum_{j=1}^{n} \frac{2M_j + 1}{|\gamma_j|} \le \operatorname{Re}\alpha,\tag{3.11}$$

then the integral operator $J_{\gamma_1,\gamma_2,...,\gamma_n}$ given by (1.3) is in the class S.

Proof. For $\beta \delta = \sum_{j=1}^{n} \frac{1}{\gamma_j}$ from Theorem 3.1 we obtain Corollary 3.2.

Remark 3.3. From Corollary 3.2, for n = 1, $\gamma_1 = \gamma$, $f_1 = f$, we obtain the integral operator J_{γ} defined by (1.2) is in the class S.

Corollary 3.4. Let γ_j , α complex numbers, $\gamma_j \neq 0$, $j = \overline{1, n}$, $0 < \text{Re}\alpha \leq 1$, M_j positive real numbers and $f_j \in \mathcal{T}_2$, $f_j(z) = z + a_{3j}z^3 + ...$, $j = \overline{1, n}$, $n \in \mathbb{N} - \{0\}$.

$$|f_j(z)| \le M_j, \ j = \overline{1, n}, \ (z \in \mathcal{U}) \tag{3.12}$$

and

$$\sum_{j=1}^{n} \frac{2M_j + 1}{|\gamma_j|} \le \operatorname{Re}\alpha,\tag{3.13}$$

then the function

$$K_{\gamma_{1},\gamma_{2},\dots,\gamma_{n}}\left(z\right) = \int_{0}^{z} \left(\frac{f_{1}\left(u\right)}{u}\right)^{\frac{1}{\gamma_{1}}} \dots \left(\frac{f_{n}\left(u\right)}{u}\right)^{\frac{1}{\gamma_{n}}} du \tag{3.14}$$

is in the class S.

Proof. For $\beta \delta = 1$, from Theorem 3.1, we obtain Corollary 3.4.

Remark 3.5. If we take n = 1, $\gamma_1 = \gamma$, $f_1 = f$, from Corollary 3.4 we have the integral operator G_{γ} given by (1.1) is in the class S.

Corollary 3.6. Let α , γ complex numbers, $\alpha \neq 0$, $\operatorname{Re}\gamma > 0$, M_j positive real numbers and $f_j \in \mathcal{T}_2$, $f_j(z) = z + a_{3j}z^3 + ...$, $j = \overline{1,n}$, $n \in \mathbb{N} - \{0\}$.

$$|f_i(z)| \le M_i, \ (j = \overline{1, n}, \ z \in \mathcal{U}),$$
 (3.15)

and

$$\sum_{j=1}^{n} \frac{2M_j + 1}{|\alpha|} \le \operatorname{Re}\gamma,\tag{3.16}$$

then for any complex number β , $\operatorname{Re}\beta \geq \operatorname{Re}\gamma$, the function

$$L_{\alpha,\beta}(z) = \left\{ \beta \int_{0}^{z} u^{\beta-1} \left(\frac{f_{1}(u)}{u} \right)^{\frac{1}{\alpha}} \dots \left(\frac{f_{n}(u)}{u} \right)^{\frac{1}{\alpha}} du \right\}^{\frac{1}{\beta}}$$
(3.17)

is in the class S.

Proof. For $\delta = 1$, from Theorem 3.1, we have Corollary 3.6.

Remark 3.7. If take n = 1, $f_1 = f$ in Corollary 3.6, we obtain that the integral operator $D_{\alpha,\beta}$ defined by (1.4) is in the class \mathcal{S} .

References

- [1] D. Breaz, N. Breaz, *Two integral operators*, Studia Universitatis "Babeş-Bolyai", Mathematica, Cluj-Napoca, No.3, 2002, 13-21.
- [2] Y.J. Kim, E.P. Merkes, On an integral of powers of a spirallike function, Kyungpook Math., J., 12 (1972), 2, 249-253.
 - [3] O. Mayer, The Functions Theory of One Variable Complex, Bucureşti, 1981.
- [4] S.S. Miller, P.T. Mocanu, Differential Subordonations, Theory and Aplications, Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York, 2000.
- [5] S. Ozaki, M. Nunokawa, *The Schwartzian derivative and univalent functions*, Proc., Amer. Math. Soc., 33 (2), (1972), 392-394.
- [6] N.N. Pascu, An improvement of Becker's Univalence Criterion, Proceedings of the Commemorative Session Simion Stoilow, University of Braşov, 1987, 43-48.
- [7] N.N. Pascu, V.Pescar, On the integral operators of Kim-Mekes and Pfaltzgraff, Mathematica, Univ. "Babes-Bolyai", Cluj-Napoca, 32 (55), 2(1990), 185-192.
- [8] V. Pescar, *Univalence conditions for certain integral operators*, Journal of Inequalities in Pure and Applied Mathematics, Volume 7, Issue 4, Article 147, 2006.

- [9] V. Pescar, Integral operators on a certain class of analytic functions, Libertas Mathematica, Vol.XXXVII (2007), 95-98.
- [10] V. Pescar, On the univalence of some integral operators, Acta Universitatis Apulensis, Mathematics Informatics, No. 16/2008, 157-164.
- [11] V. Pescar, S. Owa, *Univalence problems for integral operators by Kim-Merkes and Pfaltzgraff*, Journal of Approximation Theory and Applications, Vol.3, No.1-2, 2007, 17-21.

Virgil Pescar Department of Mathematics "Transilvania" University of Braşov Faculty of Mathematics and Computer Science 500091 Braşov, Romania email: virgilpescar@unitbv.ro