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1. Introduction

Generalized closed sets, briefly g-closed sets, in a topological space were intro-
duced by N. Levine [7] in order to extend some important properties of closed sets
to a larger family of sets. For instance, it was shown that compactness, normality
and completeness in a uniform space are inherited by g-closed subsets. K. Balachan-
dran, P. Sundaram and H. Maki [1] introduced the notion of generalized continuous
maps, briefly g-continuous maps, by using g-closed sets and studied some of their
properties.

Čech closure spaces were introduced by E. Čech in [2] and then studied by many
authors, see e.g. [3], [4], [9] and [10]. In this paper, we introduce generalized closed
(g-closed) sets in a Čech closure space. We study unions, intersections and subspaces
of g-closed subsets of a Čech closure space. Generalized open (g-open) subsets of
Čech closure spaces are also introduced and their properties are studied.

2. Preliminaries

An operator u : P (X) → P (X) defined on the power set P (X) of a set X satisfying
the axioms :

(C1) u∅ = ∅,
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(C2) A ⊆ uA for every A ⊆ X,

(C3) u(A ∪B) = uA ∪ uB for all A,B ⊆ X.

is called a Čech closure operator and the pair (X, u) is called a Čech closure space.
For short, the space will be noted by X as well, and called a closure space. A closure
operator u on a set X is called idempotent if uA = uuA for all A ⊆ X.

A subset A is closed in the Čech closure space (X, u) if uA = A and it is open
if its complement is closed. The empty set and the whole space are both open and
closed.

A Čech closure space (Y, v) is said to be a subspace of (X, u) if Y ⊆ X and
vA = uA ∩ Y for each subset A ⊆ Y . If Y is closed in (X, u), then the subspace
(Y, v) of (X, u) is said to be closed too.

Let (Y, v) be a Čech closed subspace of (X, u). If F is a closed subset of (Y, v),
then F is a closed subset of (X, u).

Let (X, u) and (Y, v) be Čech closure spaces. A map f : (X, u) → (Y, v) is said
to be continuous if f(uA) ⊆ vf(A) for every subset A ⊆ X.

One can see that a map f : (X, u) → (Y, v) is continuous if and only if uf−1(B) ⊆
f−1(vB) for every subset B ⊆ Y . Clearly, if f : (X, u) → (Y, v) is continuous, then
f−1(F ) is a closed subset of (X, u) for every closed subset F of (Y, v).

Let (X, u) and (Y, v) be Čech closure spaces. A map f : (X, u) → (Y, v) is said
to be closed (resp. open) if f(F ) is a closed ( resp. open ) subset of (Y, v) whenever
F is a closed ( resp. open ) subset of (X, u).

The product of a family {(Xα, uα) : α ∈ I} of Čech closure spaces, denoted
by

∏
α∈I

(Xα, uα), is the Čech closure space
( ∏

α∈I

Xα, u
)

where
∏
α∈I

Xα denotes the

cartesian product of sets Xα, α ∈ I, and u is the Čech closure operator generated
by the projections πα :

∏
α∈I

(Xα, uα) → (Xα, uα), α ∈ I, i.e., is defined by uA =∏
α∈I

uαπα(A) for each A ⊆
∏
α∈I

Xα.

Clearly, if {(Xα, uα) : α ∈ I} is a family of Čech closure spaces, then the projec-
tion map πβ :

∏
α∈I

(Xα, uα) → (Xβ, uβ) is closed and continuous for every β ∈ I.

Proposition 2.1. Let {(Xα, uα) : α ∈ I} be a family of Čech closure spaces and
let β ∈ I. Then F is a closed subset of (Xβ , uβ) if and only if F ×

∏
α 6=β
α∈I

Xα is a closed

subset of
∏
α∈I

(Xα, uα).

Proof. Let F be a closed subset of (Xβ, uβ). Since πβ is continuous, π−1
β (F ) is

a closed subset of
∏
α∈I

(Xα, uα). But π−1
β (F ) = F ×

∏
α 6=β
α∈I

Xα, hence F ×
∏

α 6=β
α∈I

Xα is a
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closed subset of
∏
α∈I

(Xα, uα).

Conversely, let F ×
∏

α 6=β
α∈I

Xα be a closed subset of
∏
α∈I

(Xα, uα). Since πβ is closed,

πβ

(
F ×

∏
α 6=β
α∈I

Xα

)
= F is a closed subset of (Xβ , uβ).

The following statement is evident :

Proposition 2.2. Let {(Xα, uα) : α ∈ I} be a family of Čech closure spaces and
let β ∈ I. Then G is an open subset of (Xβ, uβ) if and only if G ×

∏
α 6=β
α∈I

Xα is an

open subset of
∏
α∈I

(Xα, uα).

3. Generalized closed sets

In this section, we introduce a new class of closed sets in Čech closure spaces
and study some of their properties.

Definition 3.1. Let (X, u) be a Čech closure space. A subset A ⊆ X is called a
generalized closed set, briefly a g-closed set, if uA ⊆ G whenever G is an open subset
of (X, u) with A ⊆ G. A subset A ⊆ X is called a generalized open set, briefly a
g-open set, if its complement is g-closed.

Remark 3.2. Every closed set is g-closed. The converse is not true as can be
seen from the following example.

Example 3.3. Let X = {1, 2} and define a Čech closure operator u on X by
u∅ = ∅ and u{1} = u{2} = uX = X. Then {1} is g-closed but it is not closed.

Proposition 3.4. Let (X, u) be a Čech closure space. If A and B are g-closed
subsets of (X, u), then A ∪B is g-closed.

Proof. Let G be an open subset of (X, u) such that A ∪ B ⊆ G. Then A ⊆ G
and B ⊆ G. Since A and B are g-closed, uA ⊆ G and uB ⊆ G. Consequently,
u(A ∪B) = uA ∪ uB ⊆ G. Therefore, A ∪B is g-closed.

The intersection of two g-closed sets need not be a g-closed set as can be seen
from the following example.

Example 3.5. Let X = {a, b, c} and define a Čech closure operator u on X by
u∅ = ∅ and u{a} = {a, b}, u{b} = u{c} = u{b, c} = {b, c} and u{a, b} = u{a, c} =
uX = X. Then {a, b} and {a, c} are g-closed but {a, b}∩{a, c} = {a} is not g-closed.

Proposition 3.6. Let (X, u) be a Čech closure space. If A is g-closed and F is
closed in (X, u), then A ∩ F is g-closed.

135



C. Boonpok - Generalized closed sets in Čech closure spaces

Proof. Let G be an open subset of (X, u) such that A ∩ F ⊆ G. Then A ⊆
G ∪ (X − F ) and so uA ⊆ G ∪ (X − F ). Then uA ∩ F ⊆ G. Since F is closed,
u(A ∩ F ) ⊆ G. Hence, A ∩ F is g-closed.

Proposition 3.7. Let (Y, v) be a closed subspace of (X, u). If F is a g-closed
subset of (Y, v), then F is a g-closed subset of (X, u).

Proof. Let G be an open subset of (X, u) such that F ⊆ G. Then F ⊆ G ∩ Y .
Since F is g-closed and G∩Y is open in (Y, v), uF ∩Y = vF ⊆ G. But Y is a closed
subset of (X, u) and uF ⊆ G. Hence, F is a g-closed subset of (X, u).

The following statement is obviuos :

Proposition 3.8. Let (X, u) be a Čech closure space and let A ⊆ X. If A is
both open and g-closed, then A is closed.

Proposition 3.9. Let (X, u) be a Čech closure space and let u be idempotent. If
A is a g-closed subset of (X, u) such that A ⊆ B ⊆ uA, then B is a g-closed subset
of (X, u).

Proof. Let G be an open subset of (X, u) such that B ⊆ G. Then A ⊆ G. Since
A is g-closed, uA ⊆ G. As u is idempotent, uB ⊆ uuA = uA ⊆ G. Hence, B is
g-closed.

Proposition 3.10. Let (X, u) be a Čech closure space and let A ⊆ X. If A is
g-closed, then uA−A has no nonempty closed subset.

Proof. Suppose that A is g-closed. Let F be a closed subset of uA − A. Then
F ⊆ uA ∩ (X −A) and so A ⊆ X − F . Consequently, F ⊆ X − uA. Since F ⊆ uA,
F ⊆ uA ∩ (X − uA) = ∅, thus F = ∅. Therefore, uA − A contains no nonempty
closed set.

The converse of the previous proposition is not true as can be seen from the
following example.

Example 3.11. Let X = {1, 2, 3} and define a Čech closure operator u on X by
u∅ = ∅ and u{1} = {1, 2}, u{2} = u{3} = u{2, 3} = {2, 3} and u{1, 2} = u{1, 3} =
uX = X. Then u{1}− {1} = {2} does not contain nonempty closed set. But {1} is
not g-closed.

Corollary 3.12. Let (X, u) be a Čech closure space and let A be a g-closed
subset of (X, u). Then A is closed if and only if uA−A is closed.

Proof. Let A be a g-closed subset of (X, u). If A is closed, then uA − A = ∅.
But ∅ is always closed. Therefore, uA−A is closed.

Conversely, suppose that uA − A is closed. As A is g-closed, uA − A = ∅ by
Proposition 3.10. Consequently, uA = A. Hence, A is closed.
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Proposition 3.13. Let (X, u) be a Čech closure space and let u be idempotent.
If A is g-closed and A ⊆ B ⊆ uA, then uB −B has no nonempty closed subset.

Proof. A ⊆ B implies X − B ⊆ X − A and B ⊆ uA implies uB ⊆ uuA = uA.
Thus uB∩(X−B) ⊆ uA∩(X−A) which yields uB−B ⊆ uA−A. As A is g-closed,
uA−A has no nonempty closed subset. The same must be true for uB −B.

Proposition 3.14. Let (X, u) be a Čech closure space. A set A ⊆ X is g-open
if and only if F ⊆ X − u(X −A) whenever F is closed and F ⊆ A.

Proof. Suppose that A is g-open and let F be a closed subset of (X, u) such that
F ⊆ A. Then X −A ⊆ X −F . But X −A is g-closed and X −F is open. It follows
that u(X −A) ⊆ X − F and hence F ⊆ X − u(X −A).

Conversely, let G be an open subset of (X, u) such that X − A ⊆ G. Then
X − G ⊆ A. Since X − G is closed, X − G ⊆ X − u(X − A). Consequently,
u(X −A) ⊆ G. Hence, X −A is g-closed and so A is g-open.

The union of two g-open sets need not be a g-open set as we can see in Example
3.5 : Put A = {b} and B = {c} Then A and B are g-open but A∪B = {b, c} is not
g-open.

Proposition 3.15. Let (X, u) be a Čech closure space. If A is g-open and B is
open in (X, u), then A ∪B is g-open.

Proof. Let F be a closed subset of (X, u) such that F ⊆ A ∪ B. Then X −
(A ∪ B) ⊆ X − F . Hence, (X − A) ∩ (X − B) ⊆ X − F . By Proposition 3.6,
(X−A)∩(X−B) is g-closed. Therefore, u((X−A)∩(X−B)) ⊆ X−F . Consequently,
F ⊆ X − u((X −A)∩ (X −B)) = X − u(X − (A∪B)). By Proposition 3.14, A∪B
is g-open.

Proposition 3.16. Let (X, u) be a Čech closure space. If A and B are g-open
subsets of (X, u), then A ∩B is g-open.

Proof. Let F be a closed subset of (X, u) such that F ⊆ A ∩ B. Then X −
(A ∩ B) ⊆ X − F . Consequently, (X − A) ∪ (X − B) ⊆ X − F . By Proposition
3.4, (X − A) ∪ (X − B) is g-closed. Thus, u((X − A) ∪ (X − B)) ⊆ X − F , hence
F ⊆ X − u((X −A) ∪ (X −B)) = X − (X − (A ∩B)). By Proposition 3.14, A ∩B
is g-open.

Proposition 3.17. Let (X, u) be a Čech closure space. If A is a g-open subset
of (X, u), then G = X whenever G is open and (X − u(X −A)) ∪ (X −A) ⊆ G.

Proof. Suppose that A is g-open. Let G be an open subset of (X, u) such that
(X − u(X −A)) ∪ (X −A) ⊆ G. Then X −G ⊆ X − ((X − u(X −A)) ∪ (X −A)).
Therefore, X −G ⊆ u(X −A) ∩A or, equivalently, X −G ⊆ u(X −A)− (X −A).
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But X −G is closed and X −A is g-closed. Thus, by Proposition 3.10, X −G = ∅.
Consequently, X = G.

The converse of this proposition is not true as can be seen from Example 3.11 :
Put A = {2, 3}. Then A is not g-open and (X−u(X−A))∪(X−A) = {3}∪{1} ⊆ G
gives G = X. But A is not g-open.

Proposition 3.18. Let (X, u) be a Čech closure space and let A ⊆ X. If A is
a g-closed, then uA−A is g-open.

Proof. Suppose that A is g-open. Let F be a closed subset of (X, u) such that
F ⊆ uA − A. By Proposition 3.10, F = ∅ and hence F ⊆ X − u(X − (uX − A)).
By Proposition 3.14, uA−A is g-open.

The converse of this result is not true as can be seen from Example 3.11 : Put
A = {1}. Then u{1} − {1} = {2} which is g-open. But {1} is not g-closed.

Proposition 3.19. Let {(Xα, uα) : α ∈ I} be a family of Čech closure spaces
and let β ∈ I. Then G is a g-open subset of (Xβ , uβ) if and only if G×

∏
α 6=β
α∈I

Xα is a

g-open subset of
∏
α∈I

(Xα, uα).

Proof. Let F be a closed subset of
∏
α∈I

(Xα, uα) such that F ⊆ G×
∏

α 6=β
α∈I

Xα. Then

πβ(F ) ⊆ G. Since πβ(F ) is closed and G is g-open in (Xβ , uβ), πβ(F ) ⊆ Xβ −
uβ(Xβ−G). Therefore, F ⊆ π−1

β (Xβ−uβ(Xβ−G)) =
∏
α∈I

Xα−
∏
α∈I

uαπα

( ∏
α∈I

Xα−

G×
∏

α 6=β
α∈I

Xα

)
. By Proposition 3.14, G×

∏
α 6=β
α∈I

Xα is a g-open subset of
∏
α∈I

(Xα, uα).

Conversely, let F be a closed subset of (Xβ, uβ) such that F ⊆ G. Then F ×∏
α 6=β
α∈I

Xα ⊆ G ×
∏

α 6=β
α∈I

Xα. Since F ×
∏

α 6=β
α∈I

Xα is closed and G ×
∏

α 6=β
α∈I

Xα is g-open in

∏
α∈I

(Xα, uα), F×
∏

α 6=β
α∈I

Xα ⊆
∏
α∈I

Xα−
∏
α∈I

uαπα

( ∏
α∈I

Xα−G×
∏

α 6=β
α∈I

Xα

)
by Proposition

3.14. Therefore,
∏
α∈I

uαπα

(
(Xβ − G) ×

∏
α 6=β
α∈I

Xα

)
⊆

∏
α∈I

Xα − F ×
∏

α 6=β
α∈I

Xα = (Xβ −

F )×
∏

α 6=β
α∈I

Xα. Consequently, uβ(Xβ −G) ⊆ Xβ − F implies F ⊆ Xβ − uβ(Xβ −G).

Hence, G is a g-open subset of (Xβ , uβ).

Proposition 3.20. Let {(Xα, uα) : α ∈ I} be a family of Čech closure spaces
and let β ∈ I. Then F is a g-closed subset of (Xβ, uβ) if and only if F ×

∏
α 6=β
α∈I

Xα is
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a g-closed subset of
∏
α∈I

(Xα, uα).

Proof. Let F be a g-closed subset of (Xβ, uβ). Then Xβ − F is a g-open subset
of (Xβ, uβ). By Proposition 3.19, (Xβ − F ) ×

∏
α 6=β
α∈I

Xα =
∏
α∈I

Xα − F ×
∏

α 6=β
α∈I

Xα is a

g-open subset of
∏
α∈I

(Xα, uα). Hence, F ×
∏

α 6=β
α∈I

Xα is a g-closed subset of
∏
α∈I

(Xα, uα).

Conversely, let G be an open subset of (Xβ , uβ) such that F ⊆ G. Then F ×∏
α 6=β
α∈I

Xα ⊆ G ×
∏

α 6=β
α∈I

Xα. Since F ×
∏

α 6=β
α∈I

Xα is g-closed and G ×
∏

α 6=β
α∈I

Xα is open

in
∏
α∈I

(Xα, uα),
∏
α∈I

uαπα

(
F ×

∏
α 6=β
α∈I

Xβ

)
⊆ G ×

∏
α 6=β
α∈I

Xα. Consequently, uβF ⊆ G.

Therefore, F is a g-closed subset of (Xβ, uβ).

Proposition 3.21. Let {(Xα, uα) : α ∈ I} be a family of Čech closure spaces.
For each β ∈ I, let πβ :

∏
α∈I

(Xα, uα) → (Xβ , uβ) be the projection map. Then

(i) If F is a g-closed subset of
∏
α∈I

(Xα, uα), then πβ(F ) is a g-closed subset of

(Xβ , uβ).

(ii) If F is a g-closed subset of (Xβ, uβ), then π−1
β (F ) is a g-closed subset of∏

α∈I

(Xα, uα).

Proof. (i) Let F be a g-closed subset of
∏
α∈I

(Xα, uα) and let G be an open subset

of (Xβ, uβ) such that πβ(F ) ⊆ G. Then F ⊆ π−1
β (G) = G ×

∏
α 6=β
α∈I

Xα. Since F

is g-closed and G ×
∏

α 6=β
α∈I

Xα is open,
∏
α∈I

uαπα(F ) ⊆ G ×
∏

α 6=β
α∈I

Xα. Consequently,

uβπβ(F ) ⊆ G. Hence, πβ(F ) is a g-closed subset of (Xβ , uβ).
(ii) Let F be a g-closed subset of (Xβ, uβ). Then π−1

β (F ) = F ×
∏

α 6=β
α∈I

Xα. By

Proposition 3.20, F ×
∏

α 6=β
α∈I

Xα is a g-closed subset of
∏
α∈I

(Xα, uα). Therefore, π−1
β (F )

is a g-closed subset of
∏
α∈I

(Xα, uα).
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