STRONGLY CONVERGENT GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY A MODULUS

Ayhan Esi and Ayten Esi

ABSTRACT. We introduce the strongly generalized difference $V^{\lambda}[A, \Delta^m, p, f]$ -summable sequences with respect to a modulus function and give the relation between the spaces of strongly generalized difference $V^{\lambda}[A, \Delta^m, p]$ –summable sequences and strongly generalized difference $V^{\lambda}[A, \Delta^m, p, f]$ –summable sequences with respect to a modulus function when $A = (a_{ik})$ is an infinite matrix of complex numbers and $p = (p_i)$ is a sequence of positive real numbers. We also give natural relationship between strongly generalized difference $V^{\lambda}[A, \Delta^m, p, f]$ -summable sequences with respect to a modulus function and strongly generalized difference $S^{\lambda}[A, \Delta^m]$ -statistical convergence.

2000 Mathematics Subject Classification: 40A05;40C05;46A45.

Key words: De la Vallee-Poussin mean; difference sequence; modulus function; statistical convergence.

1. Introduction

Throughout the article w denotes the space of all sequences. The studies on difference sequence spaces was initiated by Kizmaz [11]. This idea was further generalized by Et and Colak [7], Et and Esi [8], Esi and Tripathy [6], Tripathy et al. [22] and many others. For more details one may refer to these references.

Let $m \in \mathbb{N}$ be fixed, then the operation

$$\Delta^m: w \to w$$

is defined by

$$\Delta x_k = x_k - x_{k+1}$$

and

$$\Delta^m x_k = \Delta \left(\Delta^{m-1} x_k \right), \ (m \ge 2)$$

for all $k \in \mathbb{N}$, where $\Delta^m x_k = \Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}$, $\Delta^0 x_k = x_k$, for all $k \in \mathbb{N}$.

The generalized difference operator $\Delta^m x_k$ has the following binomial representation:

$$\Delta^m x_k = \sum_{i=0}^m (-1)^i \binom{m}{i} x_{k+i}.$$

The notion of modulus function was introduced by Nakano [19] and Ruckle [21]. We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that

- (i) f(x) = 0 if and only if x = 0,
- (ii) $f(x+y) \le f(x) + f(y)$,
- (iii) f is increasing from the right at 0.

It is immediate from (ii) and (iv) that f is continuous on $(0, \infty]$. Also, from condition (ii), we have $f(nx) \leq nf(x)$ for all $n \in \mathbb{N}$ and so $n^{-1}f(x) \leq f(xn^{-1})$ for all $n \in \mathbb{N}$. A modulus function may be bounded (for example, $f(x) = x(1+x)^{-1}$) or unbounded (for example, f(x) = x). Ruckle [21], Maddox [16], Esi [5] and several authors used a modulus f to construct some sequence spaces.

Let $\Lambda=(\lambda_r)$ be a non-decreasing sequence of positive real numbers tending to infinity and $\lambda_1=1$ and $\lambda_{r+1}\leq \lambda_r+1$. The generalized de la Vallee-Poussin means is defined by $t_r(x)=\lambda_r^{-1}\sum_{i\in I_r}x_i$, where $I_r=[r-\lambda_r+1,r]$. A sequence $x=(x_i)$ is said to be (V,λ) -summable to a number L if $t_r(x)\to L$ as $r\to\infty$ (see for instance, Leindler [13]). If $\lambda_r=r$, then the (V,λ) -summability is reduced to ordinary (C,1)-summability. A sequence $x=(x_i)$ is said to be strongly (V,λ) -summable to a number L if $t_r(|x-L|)\to 0$ as $r\to\infty$.

Let $A = (a_{ik})$ be an infinite matrix of complex numbers. We write $Ax = (A_i(x))_{i=1}^{\infty}$ if $A_i(x) = \sum_{k=1}^{\infty} a_{ik} x_k$ converges for each $i \in \mathbb{N}$.

Spaces of strongly summable sequences were discussed by Kuttner [12], Maddox [14] and others. The class of sequences which are strongly Cesaro summable with respect to a modulus was introduced by Maddox [6] as an extension of the definition of strongly Cesaro summable sequences. Connor [2] further extended this definition to a definition of strongly A-summability with respect to a modulus when A is non-negative regular matrix.

Recently, the concept of strong (V, λ) -summability was generalized by Bilgin and Altun [1] as follows:

$$V^{\lambda}[A, p, f] = \left\{ x = (x_k) \in w : \lim_{r \to \infty} \lambda_r^{-1} \sum_{i \in I_r} [f(|A_i(x) - L|)]^{p_i} = 0, \text{ for some L} \right\}.$$

In the present paper we introduce the strongly generalized difference $V^{\lambda}[A, \Delta^m, p, f]$ summable sequences with respect to a modulus function and give the relation between the spaces of strongly generalized difference $V^{\lambda}[A, \Delta^m, p]$ –summable sequences and strongly generalized difference $V^{\lambda}[A, \Delta^m, p, f]$ –summable sequences

with respect to a modulus function when $A = (a_{ik})$ is an infinite matrix of complex numbers and $p = (p_i)$ is a sequence of positive real numbers. We also give natural relationship between strongly generalized difference $V^{\lambda}[A, \Delta^m, p, f]$ -summable sequences with respect to a modulus function and strongly $S^{\lambda}(A, \Delta^m)$ -statistical convergence.

The following well-known inequality will be used throughout this paper:

$$|a_k + b_k|^{p_k} \le T(|a_k|^{p_k} + |b_k|^{p_k}) \tag{1}$$

where a_k and b_k are complex numbers, $T = \max(1, 2^{H-1})$ and $H = \sup_k p_k < \infty$ (one may refer to Maddox [15]).

2. Main results

Let $A = (a_{ik})$ is an infinite matrix of complex numbers and $p = (p_i)$ be a bounded sequence of positive real numbers such that $0 < h = \inf_i p_i \le p_i \le \sup_i p_i = H < \infty$ and f be a modulus. We define

$$V_{1}^{\lambda} [A, \Delta^{m}, p, f] = \left\{ x = (x_{k}) \in w : \lim_{r \to \infty} \lambda_{r}^{-1} \sum_{i \in I_{r}} [f(|A_{i}(\Delta^{m}x) - L|)]^{p_{i}} = 0 \right\},$$

$$V_{0}^{\lambda} [A, \Delta^{m}, p, f] = \left\{ x = (x_{k}) \in w : \lim_{r \to \infty} \lambda_{r}^{-1} \sum_{i \in I_{r}} [f(|A_{i}(\Delta^{m}x)|)]^{p_{i}} = 0 \right\},$$

$$V_{\infty}^{\lambda} [A, \Delta^{m}, p, f] = \left\{ x = (x_{k}) \in w : \sup_{r} \lambda_{r}^{-1} \sum_{i \in I_{r}} [f(|A_{i}(\Delta^{m}x)|)]^{p_{i}} < \infty \right\},$$

where $A_i(\Delta^m x) = \sum_{k=1}^{\infty} a_{ik} \Delta^m x_k$.

A sequence $x=(x_i)$ is said to be strongly generalized difference $V_1^{\lambda}[A, \Delta^m, p, f]$ -convergent to a number L if there is a complex number L such that $x=(x_i) \in V_1^{\lambda}[A, \Delta^m, p, f]$. In this case we write $x \to L\left(V_1^{\lambda}[A, \Delta^m, p, f]\right)$.

Throughout the paper β will denote one of the notations 0,1 or ∞ .

When f(x) = x, then we write the sequence spaces $V_{\beta}^{\lambda}[A, \Delta^{m}, p]$ in place of $V_{\beta}^{\lambda}[A, \Delta^{m}, p, f]$.

If $p_i=1$ for all $i\in\mathbb{N},\ V_\beta^\lambda\left[A,\Delta^m,p,f\right]$ reduce to $V_\beta^\lambda\left[A,\Delta^m,f\right]$. If $p_i=1$ for all $i\in\mathbb{N}, m=0$ and $\lambda_r=r$, the sequence spaces $V_\beta^\lambda\left[A,\Delta^m,p,f\right]$ reduce to $w_\beta\left(f_A\right)$ which were defined and studied by Esi and Et [5]. If $m=0,\ V_\beta^\lambda\left[A,\Delta^m,p,f\right]$ reduce to $V_\beta^\lambda\left[A,p,f\right]$. The sequence spaces $V_\beta^\lambda\left[A,p,f\right]$ were defined and studied by Bilgin and Altun [1].

In this section we examine some topological properties of $V_{\beta}^{\lambda}[A, \Delta^m, p, f]$ spaces and investigate some inclusion relations between these spaces.

Theorem 2.1. Let f be a modulus function. Then, $V_{\beta}^{\lambda}[A, \Delta^m, p, f]$ is a linear space over the complex field \mathbb{C} for $\beta = 0, 1$ or ∞ .

Proof. We give the proof only for $\beta=0$. Since the proof is analogous for the spaces $V_1^{\lambda}\left[A,\Delta^m,p,f\right]$ and $V_{\infty}^{\lambda}\left[A,\Delta^m,p,f\right]$, we omit the details. Let $x,y\in V_0^{\lambda}\left[A,\Delta^m,p,f\right]$ and $\alpha,\mu\in\mathbb{C}$. Then there exists integers T_{α} and T_{μ}

Let $x, y \in V_0^{\lambda}[A, \Delta^m, p, f]$ and $\alpha, \mu \in \mathbb{C}$. Then there exists integers T_{α} and T_{μ} such that $|\alpha| \leq T_{\alpha}$ and $|\mu| \leq T_{\mu}$. By using (1) and the properties of modulus f, we have

$$\lambda_r^{-1} \sum_{i \in I_r} \left[f\left(\left| \sum_{k=1}^{\infty} a_{ik} \left(\Delta^m \left(\alpha x_k + \mu y_k \right) \right) \right| \right) \right]^{p_i} \le$$

$$\le \lambda_r^{-1} \sum_{i \in I_r} \left[f\left(\left| \sum_{k=1}^{\infty} \alpha a_{ik} \Delta^m x_k + \sum_{k=1}^{\infty} \mu a_{ik} \Delta^m y_k \right| \right) \right]^{p_i}$$

$$\le T \lambda_r^{-1} \sum_{i \in I_r} \left[T_{\alpha} f\left(\left| \sum_{k=1}^{\infty} a_{ik} \Delta^m x_k \right| \right) \right]^{p_i} + T \lambda_r^{-1} \sum_{i \in I_r} \left[T_{\mu} f\left(\left| \sum_{k=1}^{\infty} a_{ik} \Delta^m y_k \right| \right) \right]^{p_i}$$

$$\le T T_{\alpha}^H \lambda_r^{-1} \sum_{i \in I_r} \left[f\left(\left| \sum_{k=1}^{\infty} a_{ik} \Delta^m x_k \right| \right) \right]^{p_i} + T T_{\mu}^H \lambda_r^{-1} \sum_{i \in I_r} \left[f\left(\left| \sum_{k=1}^{\infty} a_{ik} \Delta^m y_k \right| \right) \right]^{p_i}$$

$$\to 0 \text{ as } r \to \infty.$$

This proves that $V_0^{\lambda}[A, \Delta^m, p, f]$ is linear.

Theorem 2.2. Let f be a modulus function. Then the inclusions

$$V_0^{\lambda}\left[A,\Delta^m,p,f\right]\subset V_1^{\lambda}\left[A,\Delta^m,p,f\right]\subset V_{\infty}^{\lambda}\left[A,\Delta^m,p,f\right]$$

hold.

Proof. The inclusion $V_0^{\lambda}[A,\Delta^m,p,f]\subset V_1^{\lambda}[A,\Delta^m,p,f]$ is obvious. Now let $x\in V_1^{\lambda}[A,\Delta^m,p,f]$ such that $x\to L\left(V_1^{\lambda}[A,\Delta^m,p,f]\right)$. By using (1), we have

$$\sup_{r} \lambda_{r}^{-1} \sum_{i \in I_{r}} \left[f\left(|A_{i}\left(\Delta^{m}x\right)| \right) \right]^{p_{i}} = \sup_{r} \lambda_{r}^{-1} \sum_{i \in I_{r}} \left[f\left(|A_{i}\left(\Delta^{m}x\right) - L + L| \right) \right]^{p_{i}} \\
\leq T \sup_{r} \lambda_{r}^{-1} \sum_{i \in I_{r}} \left[f\left(|A_{i}\left(\Delta^{m}x\right) - L| \right) \right]^{p_{i}} + T \sup_{r} \lambda_{r}^{-1} \sum_{i \in I_{r}} \left[f\left(|L| \right) \right]^{p_{i}} \\
\leq T \sup_{r} \lambda_{r}^{-1} \sum_{i \in I_{r}} \left[f\left(|A_{i}\left(\Delta^{m}x\right) - L| \right) \right]^{p_{i}} + T \max\left\{ f\left(|L| \right)^{h}, f\left(|L| \right)^{H} \right\} < \infty.$$

Hence $x \in V_{\infty}^{\lambda}[A, \Delta^m, p, f]$. This shows that the inclusion

$$V_1^{\lambda}[A,\Delta^m,p,f] \subset V_{\infty}^{\lambda}[A,\Delta^m,p,f]$$

holds. This completes the proof.

Theorem 2.3. Let $p = (p_i) \in l_{\infty}$. Then $V_0^{\lambda}[A, \Delta^m, p, f]$ is a paranormed space with

$$g(x) = \sup_{r} \left(\lambda_r^{-1} \sum_{i \in I_r} \left[f\left(\left| A_i \left(\Delta^m x \right) \right| \right) \right]^{p_i} \right)^{\frac{1}{M}}$$

where $M = max(1, \sup_i p_i)$.

Proof. Clearly $g\left(-x\right)=g\left(x\right)$. It is trivial that $\Delta^{m}x_{k}=0$ for x=0. Hence we get $g\left(0\right)=0$. Since $\frac{p_{i}}{M}\leq1$ and $M\geq1$, using the Minkowski's inequality and definition of modulus f, for each r, we have

$$\left(\lambda_{r}^{-1} \sum_{i \in I_{r}} \left[f\left(|A_{i}\left(\Delta^{m}\left(x+y\right)\right)| \right) \right]^{p_{i}} \right)^{\frac{1}{M}}$$

$$\leq \left(\lambda_{r}^{-1} \sum_{i \in I_{r}} \left[f\left(|A_{i}\left(\Delta^{m}x\right) + f\left(A_{i}\left(\Delta^{m}y\right)\right)| \right) \right]^{p_{i}} \right)^{\frac{1}{M}}$$

$$\leq \left(\lambda_{r}^{-1} \sum_{i \in I_{r}} \left[f\left(|A_{i}\left(\Delta^{m}x\right)| \right) \right]^{p_{i}} \right)^{\frac{1}{M}} + \left(\lambda_{r}^{-1} \sum_{i \in I_{r}} \left[f\left(|A_{i}\left(\Delta^{m}y\right)| \right) \right]^{p_{i}} \right)^{\frac{1}{M}}.$$

Now it follows that g is subadditive. Finally, to check the continuity of multiplication, let us take any complex number α . By definition of modulus f, we have

$$g(\alpha x) = \sup_{r} \left(\lambda_r^{-1} \sum_{i \in I_r} \left[f\left(\left| A_i \left(\Delta^m \alpha x \right) \right| \right) \right]^{p_i} \right)^{\frac{1}{M}} \le K^{\frac{H}{M}} g\left(x \right)$$

where $K = 1 + [|\alpha|]$ ([|t|] denotes the integer part of t). Since f is modulus, we have $x \to 0$ implies $g(\alpha x) \to 0$. Similarly $x \to 0$ and $\alpha \to 0$ implies $g(\alpha x) \to 0$. Finally, we have x fixed and $\alpha \to 0$ implies $g(\alpha x) \to 0$. This completes the proof.

Now we give relation between strongly generalized difference $V_{\beta}^{\lambda}\left[A,\Delta^{m},p\right]$ –convergence and strongly generalized difference $V_{\beta}^{\lambda}\left[A,\Delta^{m},p,f\right]$ –convergence.

Theorem 2.4. Let f be a modulus function. Then

$$V_{\beta}^{\lambda}[A, \Delta^m, p] \subset V_{\beta}^{\lambda}[A, \Delta^m, p, f]$$
.

Proof. We consider only the case $\beta = 1$. Let $x \in V_1^{\lambda}[A, \Delta^m, p]$ and $\varepsilon > 0$. We can choose $0 < \delta < 1$ such that $f(t) < \varepsilon$ for every $t \in [0, \infty)$ with $0 \le t \le \delta$. Then, we can write

$$\lambda_r^{-1} \sum_{i \in I_r} \left[f\left(\left| A_i \left(\Delta^m x \right) - L \right| \right) \right]^{p_i}$$

$$=\lambda_r^{-1}\sum_{\stackrel{i\in I_r}{|A_i(\Delta^mx)-L|\leq \delta}}[f\left(|A_i\left(\Delta^mx\right)-L|\right)]^{p_i}+\lambda_r^{-1}\sum_{\stackrel{i\in I_r}{|A_i(\Delta^mx)-L|>\delta}}[f\left(|A_i\left(\Delta^mx\right)-L|\right)]^{p_i}$$

$$\begin{split} &= \lambda_r^{-1} \sum_{\substack{i \in I_r \\ |A_i(\Delta^m x) - L| \leq \delta}} \left[f\left(|A_i\left(\Delta^m x\right) - L| \right) \right]^{p_i} + \lambda_r^{-1} \sum_{\substack{i \in I_r \\ |A_i(\Delta^m x) - L| > \delta}} \left[f\left(|A_i\left(\Delta^m x\right) - L| \right) \right]^{p_i} \\ &\leq \max \left\{ f\left(\varepsilon\right)^h, f\left(\varepsilon\right)^H \right\} + \max \left\{ 1, \left(2f\left(1\right)\delta^{-1} \right)^H \right\} \lambda_r^{-1} \sum_{\substack{i \in I_r \\ |A_i(\Delta^m x) - L| > \delta}} \left(|A_i\left(\Delta^m x\right) - L| \right)^{p_i}. \end{split}$$

Therefore $x \in V_1^{\lambda}[A, \Delta^m, p, f]$.

Theorem 2.5. Let f be a modulus function. If $\lim_{t\to\infty} \frac{f(t)}{t} = \phi > 0$, then $V_{\beta}^{\lambda}[A, \Delta^m, p] = V_{\beta}^{\lambda}[A, \Delta^m, p, f]$.

Proof. For any modulus function, the existence of positive limit given with $\phi > 0$ was introduced by Maddox [17]. Let $\phi > 0$ and $x \in V_{\beta}^{\lambda}[A, \Delta^m, p, f]$. Since $\phi > 0$, we have $f(t) \geq \phi t$ for all $t \in [0, \infty)$. From this inequality, it is easy to see that $x \in V_{\beta}^{\lambda}[A, \Delta^m, p]$. By using Theorem 2.4., the proof is completed.

In the Theorem 2.5., the condition $\phi > 0$ can not be omitted. For this consider the following simple example.

Example 2.1. Let $f(x) = \ln(1+x)$. Then $\phi = 0$. Now define $a_{ik} = 1$ for i = k, zero otherwise, $p_i = 1$ for all $i \in \mathbb{N}$ and $\Delta^m x_k$ to be $\lambda_r - th$ term in I_r for every $r \geq 1$ and $x_i = 0$ otherwise. Then we have

$$\lambda_r^{-1} \sum_{i \in I_r} \left[f\left(|A_i\left(\Delta^m x\right)| \right) \right]^{p_i} = \lambda_r^{-1} \ln\left(1 + \lambda_r\right) \to 0 \text{ as } r \to \infty$$

and so $x \in V_0^{\lambda}[A, \Delta^m, p, f]$, but

$$\lambda_r^{-1} \sum_{i \in I_r} (|A_i(\Delta^m x)|)^{p_i} = \lambda_r^{-1} \lambda_r \to 1 \text{ as } r \to \infty$$

and so $x \notin V_0^{\lambda}[A, \Delta^m, p]$.

Theorem 2.6. Let $0 < p_i \le q_i$ for all $i \in \mathbb{N}$ and let $\left(\frac{q_i}{p_i}\right)$ be bounded. Then $V_{\beta}^{\lambda}[A,\Delta^m,q,f] \subset V_{\beta}^{\lambda}[A,\Delta^m,p,f]$.

Proof. If we take $b_i = [f(|A_i(\Delta^m x)|)]^{p_i}$ for all $i \in \mathbb{N}$, then using the same techique of Theorem 2 of Nanda [20], it is easy to prove the theorem.

Corollary 2.7. The following statements are valid:

- (a) If $0 < inf_i p_i \le 1$ for all $i \in \mathbb{N}$, then $V_{\beta}^{\lambda}[A, \Delta^m, f] \subset V_{\beta}^{\lambda}[A, \Delta^m, p, f]$.
- (b) If $1 \leq p_i \leq \sup_i p_i = H < \infty$ for all $i \in \mathbb{N}$, then $V_{\beta}^{\lambda}[A, \Delta^m, p, f] \subset V_{\beta}^{\lambda}[A, \Delta^m, f]$.

Proof.(a). It follows from Theorem 2.6 with $q_i = 1$ for all $i \in \mathbb{N}$.

(b) It follows from Theorem 2.6. with $p_i = 1$ for all $i \in \mathbb{N}$.

Theorem 2.8. Let $m \geq 1$ be a fixed integer, then $V_{\beta}^{\lambda}\left[A, \Delta^{m-1}, p, f\right] \subset V_{\beta}^{\lambda}\left[A, \Delta^{m}, p, f\right]$.

Proof. The proof of the inclusions follows from the following inequality

$$\lambda_r^{-1} \sum_{i \in I_r} [f(|A_i(\Delta^m x)|)]^{p_i} \le T \lambda_r^{-1} \sum_{i \in I_r} [f(|A_i(\Delta^{m-1} x)|)]^{p_i}$$
$$+ T \lambda_r^{-1} \sum_{i \in I_r} [f(|A_i(\Delta^m x)|)]^{p_i}.$$

$$3.S^{\lambda}(A,\Delta^m)$$
 -statistical convergence

In this section, we introduce natural relationship between strongly generalized $V_1^{\lambda}[A, \Delta^m, p, f]$ —convergence and strongly generalized difference $S^{\lambda}(A, \Delta^m)$ —statistical convergence. In [10], Fast introduced the idea of statistical convergence. These idea was later studied by Connor [2], Maddox [16], Mursaleen [18], Et and Nuray [9], Esi [5], Savaş [23] and many others.

A complex number sequence $x = (x_i)$ is said to be statistically convergent to the number L if for every $\varepsilon > 0$, $\lim_{n \to \infty} \left| \frac{K(\varepsilon)}{n} \right| = 0$, where $|K(\varepsilon)|$ denotes the number of elements in the set $K(\varepsilon) = \{i \in \mathbb{N} : |x_i - L| \ge \varepsilon\}$.

A complex number sequence $x=(x_i)$ is said to be strongly generalized difference $S^{\lambda}(A,\Delta^m)$ –statistically convergent to the number L if for every $\varepsilon>0$, $\lim_{r\to\infty}\lambda_r^{-1}|KA(\Delta^m,\varepsilon)|=0$, where $|KA(\Delta^m,\varepsilon)|$ denotes the number of elements in the set $KA(\Delta^m,\varepsilon)=\{i\in I_r: |A_i(\Delta^mx)-L|\geq\varepsilon\}$. The set of all strongly generalized difference $S^{\lambda}(A,\Delta^m)$ –statistically convergent sequences is denoted by $S^{\lambda}(A,\Delta^m)$.

If m = 0, $S^{\lambda}(A, \Delta^m)$ reduce to $S^{\lambda}(A)$ which was defined and studied by Bilgin and Altun [1]. If A is identity matrix and $\lambda_r = r$, $S^{\lambda}(A, \Delta^m)$ reduce to $S^{\lambda}(\Delta^m)$

which was defined and studied by Et and Nuray [9]. If m=0 and $\lambda_r=r$, $S^{\lambda}(A,\Delta^m)$ reduce to S_A which was defined and studied by Esi [3]. If m=0, A is identity matrix and $\lambda_r=r$, strongly generalized difference $S^{\lambda}(A,\Delta^m)$ -statistically convergent sequences reduce to ordinary statistical convergent sequences.

Now we give the relation between strongly generalized difference $S^{\lambda}\left(A,\Delta^{m}\right)$ –statistical convergence and strongly generalized difference $V_{\mathbf{l}}^{\lambda}\left[A,\Delta^{m},p,f\right]$ –convergence.

Theorem 3.1. Let f be a modulus function. Then

$$V_1^{\lambda}[A, \Delta^m, p, f] \subset S^{\lambda}(A, \Delta^m)$$
.

Proof. Let $x \in V_1^{\lambda}[A, \Delta^m, p, f]$. Then

$$\lambda_r^{-1} \sum_{i \in I_r} \left[f\left(|A_i \left(\Delta^m x - L \right)| \right) \right]^{p_i} \ge \lambda_r^{-1} \sum_{\substack{i \in I_r \\ |A_i \left(\Delta^m x \right) - L| > \delta}} \left[f\left(|A_i \left(\Delta^m x \right) - L| \right) \right]^{p_i}$$

$$\begin{split} \geq \lambda_{r}^{-1} \sum_{\substack{i \in I_{r} \\ |A_{i}(\Delta^{m}x) - L| > \delta}} \left[f\left(\varepsilon\right) \right]^{p_{i}} \geq \lambda_{r}^{-1} \sum_{\substack{i \in I_{r} \\ |A_{i}(\Delta^{m}x) - L| > \delta}} \min\left(f\left(\varepsilon\right)^{h}, f\left(\varepsilon\right)^{H} \right) \\ \geq \min\left(f\left(\varepsilon\right)^{h}, f\left(\varepsilon\right)^{H} \right) \lambda_{r}^{-1} \left| KA\left(\Delta^{m}, \varepsilon\right) \right|. \end{split}$$

Hence $x \in S^{\lambda}(A, \Delta^m)$.

Theorem 3.2. Let f be a bounded modulus function. Then $V_1^{\lambda}[A, \Delta^m, p, f] = S^{\lambda}(A, \Delta^m)$.

Proof. By Theorem 3.1., it is sufficient to show that $V_1^{\lambda}[A, \Delta^m, p, f] \supset S^{\lambda}(A, \Delta^m)$. Let $x \in S^{\lambda}(A, \Delta^m)$. Since f is bounded, so there exists an integer K > 0 such that $f(|A_i(\Delta^m x) - L|) \leq K$. Then for a given $\varepsilon > 0$, we have

$$\lambda_r^{-1} \sum_{i \in I_r} \left[f\left(\left| A_i \left(\Delta^m x \right) - L \right| \right) \right]^{p_i}$$

$$=\lambda_{r}^{-1}\sum_{\stackrel{i\in I_{r}}{|A_{i}\left(\Delta^{m}x\right)-L|\leq\delta}}\left[f\left(\left|A_{i}\left(\Delta^{m}x\right)-L\right|\right)\right]^{p_{i}}+\lambda_{r}^{-1}\sum_{\stackrel{i\in I_{r}}{|A_{i}\left(\Delta^{m}x\right)-L|>\delta}}\left[f\left(\left|A_{i}\left(\Delta^{m}x\right)-L\right|\right)\right]^{p_{i}}$$

$$\leq \max \left(f\left(\varepsilon \right)^{h}, f\left(\varepsilon \right)^{H} \right) + K^{H} \lambda_{r}^{-1} \left| KA\left(\Delta^{m}, \varepsilon \right) \right|.$$

Taking the limit as $\varepsilon \to 0$ and $r \to \infty$, it follows that $x \in V_1^{\lambda}[A, \Delta^m, p, f]$. This completes the proof.

References

- [1] Bilgin, T. and Altun, Y., Strongly (V^{λ}, A, p) -summable sequence spaces defined by a modulus, Mathematical Modelling and Analysis, $\mathbf{12}(4), (2004), 419-424$.
- [2] Connor, J.S., The statistical and strong p-Cesaro convergence of sequences, Analysis, 8,(1988), 47-63.
- [3] Esi, A., The A-statistical and strongly (A-p)-Cesaro convergence of sequences, Pure and Applied Mathematica Sciences, Vol:**XLIII**,No:1-2,(1996), 89-93.
- [4] Esi, A., Some new sequence spaces defined by a sequence of moduli, Tr.J.of Math., 21, (1997), 61-68.
- [5] Esi, A. and Et, M., Some new sequence spaces defined by a modulus, Pure and Applied Mathematica Sciences, Vol:**XLIII**,No:1-2,(1996), 95-99.
- [6] Esi, A. and Tripathy, B.C., Strongly almost convergent generalized difference sequences associated with multiplier sequences, Math.Slovaca, 57(4),(2007), 339-348.
- [7] Et, M. and Çolak, R., On some generalized difference spaces, Soochow J.Math., **21**(1995), 377-386.
- [8] Et, M. and Esi, A., On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull.Malaysian Math.Soc.(Second Series), 23,(2000), 25-32.
- [9] Et, M. and Nuray, F., Δ^m -statistical convergence, Indian J.Pure Appl.Math., **32**,(2001), 961-969.
 - [10] Fast, H., Sur la convergence statistique, Colloq.Math., 2,(1951), 241-244.
- [11] Kizmaz, H., On certain sequence spaces, Canad.Math.Bull., ${\bf 24}$, (1981), 169-176.
- [12] Kuttner, B., Note on strong summability, J.London.Math.Soc., 21, (1946), 118-122.
- [13] Leindler, L., Über die la Vallee-Pousinche summierbarkeit allgemeiner orthoganalreihen, Acta Math.Hung., 16, (1965), 375-378.
- [14] Maddox, I.J., Spaces of strongly summable sequences, Quart.J.Math.Oxford Ser. 18(2), (1967), 345-355.
 - [15] Maddox, I.J., Elements of Functional Analysis, Cambirdge Univ. Press, 1970.
- [16] Maddox, I.J., Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100, (1986), 161-166.
- [17] Maddox, I.J., Inclusion between FK spaces and Kuttner's theorem, Math. Proc. Camb. Phil. Soc., **101**, (1987), 523-527.
 - [18] Mursaleen, M., λ -statistical convergence, Math.Slovaca, **50**, (2000), 111-115.
 - [19] Nakano, H., Concave modulars, J.Math.Soc., 5, (1953), 29-49.
- [20] Nanda, S., Strongly almost summable and strongly almost convergent sequences, Acta Math.Hung., 49(1-2), (1987), 71-76.
- [21] Ruckle, W.H., FK spaces in which the sequence of coordinate vectors in bounded, Canad.J.Math., 25, (1973), 973-978.

[22] Tripathy, B.C., Esi, A. and Tripathy, B.K., On a new type generalized difference Cesaro sequence spaces, Soochow J.Math. 31(3), (2005), 333-340.

[23] Savaş, E., Some sequence spaces and statistical convergence, Int.J.Math. & Math.Sci. 29(5), (2002), 303-306.

Ayhan Esi and Ayten Esi Department of Mathematics University of Adiyaman 02040, Adiyaman, Turkey, email: aesi23@hotmail.com