PSEUDO PROJECTIVELY FLAT MANIFOLDS SATISFYING CERTAIN CONDITION ON THE RICCI TENSOR

BANDANA DAS AND ARINDAM BHATTACHARYYA

ABSTRACT. In this paper we consider pseudo projectively flat Riemannian manifold whose Ricci tensor S satisfies the condition S(X,Y) = rT(X)T(Y), where r is the scalar curvature, T is a non-zero 1-form defined by $g(X,\xi) = T(X)$, ξ is a unit vector field and prove that the manifold is of pseudo quasi constant curvature, integral curves of the vector field ξ are geodesic and ξ is a proper concircular vector field, manifold is locally product type and it can be expressed as a warped product IXe^qM^* where M^* is an Einstein manifold.

2000 Mathematics Subject Classification: 53C25.

1. Introduction

In 2006, De and Matsuyama studied quasi conformally flat manifolds [2] satisfying the condition

$$S(X,Y) = rT(X)T(Y) \tag{1}$$

where r is the scalar curvature and T is a 1-form defined by $T(X) = g(X, \xi)$, and ξ is a unit vector field. The present paper deals with the pseudo projectively flat manifold $(M^n,g)(n>3)$ whose Ricci tensor S satisfies the condition (1.1). For the scalar curvature r we suppose that $r \neq 0$ for each point of M and we have proved that the manifold is of pseudo quasi constant curvature, the integral curves of the vector field ξ are geodesic and ξ is a proper concircular vector field. The manifold is a locally product manifold and can be expressed as a locally warped product IXe^qM^* where M^* is an Einstein manifold.

From [5] we know that a pseudo-projective curvature tensor \bar{P} is defined by

$$\bar{P}(X,Y)Z = aR(X,Y)Z + b[S(Y,Z)X - S(X,Z)Y]$$

$$-\frac{r}{n}\left[\frac{a}{n-1} + b\right][g(Y,Z)X - g(X,Z)Y]$$
 (2)

where a, b are constants such that $a, b \neq 0$; R, S and r are the Riemannian curvature tensor of type (1,3), the Ricci tensor and the scalar curvature respectively. We have defined pseudo quasi constant curvature as follows

Definition 1. A Riemannian manifold $(M^n, g)(n > 3)$ is said to be of pseudo quasi-constant curvature if it is pseudo projectively flat and its curvature tensor R of type (0,4) satisfies the condition

$$\dot{R}(X,Y,Z,W) = a[g(Y,Z)g(X,W) - g(X,Z)g(Y,W)]
+P(Y,Z)g(X,W) - P(X,Z)g(Y,W)$$
(3)

where a is constant and $g(R(X,Y)Z,W) = \acute{R}(X,Y,Z,W)$ and P is a non-zero (0,2) tensor.

From (1.2) we obtain

$$(\nabla_W \bar{P})(X,Y)Z = a(\nabla_W R)(X,Y)Z + b[(\nabla_W S)(Y,Z)X - (\nabla_W S)(X,Z)Y]$$
$$-\frac{dr(W)}{n} \left[\frac{a}{n-1} + b\right] [g(Y,Z)X - g(X,Z)Y] \tag{4}$$

where ∇ is the covariant differentiation with respect to the Riemannian metric g. We know that

$$(divR)(X,Y)Z = (\nabla_X S)(Y,Z) - (\nabla_Y S)(X,Z).$$

Hence contracting (1.4) we obtain

$$(div\bar{P})(X,Y)Z = (a+b)[(\nabla_X S)(Y,Z) - (\nabla_Y S)(X,Z)]$$

$$-\frac{1}{n}[\frac{a}{n-1} + b][g(Y,Z)dr(X) - g(X,Z)dr(Y)]$$
(5)

Here we consider pseudo projectively flat manifold i.e., $\bar{P}(X,Y)Z=0$. Hence $(div\bar{P})(X,Y)Z=0$ where 'div' denotes the divergence. If $a+b\neq 0$, then from (1.5) it follows that

$$(\nabla_X S)(Y, Z) - (\nabla_Y S)(X, Z) = \alpha [g(Y, Z)dr(X) - g(X, Z)dr(Y)] \tag{6}$$

where $\alpha = \frac{1}{n(a+b)} \left[\frac{a}{n-1} + b \right]$.

2.Pseudo projectively flat manifold satisfying the condition (1.1)

Proposition 2.1. A pseudo projectively flat manifold satisfying S(X,Y) = rT(X)T(Y) under the assumption of $r \neq 0$ is a manifold of pseudo quasi-constant curvature.

Proof. From (1.2) we get

$$\bar{P}(X,Y,Z,W) = a\hat{R}(X,Y,Z,W) + b[S(Y,Z)g(X,W) - S(X,Z)g(Y,W)] - \frac{r}{n} \left[\frac{a}{n-1} + b\right] [g(Y,Z)g(X,W) - g(X,Z)g(Y,W)]$$
(7)

If the manifold is pseudo projectively flat, then we obtain

$$\dot{R}(X,Y,Z,W) = \frac{b}{a}[S(X,Z)g(Y,W) - S(Y,Z)g(X,W)]
+ \frac{r}{an}[\frac{a}{n-1} + b][g(Y,Z)g(X,W) - g(X,Z)g(Y,W)]$$
(8)

which implies that it is a manifold of pseudo quasi-constant curvature.

Theorem No 2.1.In a pseudo projectively flat Riemannian manifold satisfying S(X,Y) = rT(X)T(Y) under the assumption of $r \neq 0$, the integral curves of the vector field ξ are geodesic.

Proof. Differentiating covariantly to (1.1) along Z we have

$$(\nabla_Z S)(X,Y) = dr(Z)T(X)T(Y) + r[(\nabla_Z T)(X)T(Y) + T(X)(\nabla_Z T)(Y)] \tag{9}$$

Substituting (2.3) in (1.6), we obtain

$$dr(Z)T(X)T(Y) + r[(\nabla_Z T)(X)T(Y) + T(X)(\nabla_Z T)(Y)]$$

$$-dr(X)T(Z)T(Y) - r[(\nabla_X T)(Z)T(Y) + T(Z)(\nabla_X T)(Y)]$$

$$= \alpha[g(X,Y)dr(Z) - g(Y,Z)dr(X)]$$
(10)

Now putting $Y = Z = e_i$ in the above expression where $\{e_i\}$ define an orthonormal basis of the tangent space at each point of the manifold and taking summation over $i, 1 \leq i \leq n$, we get

$$\alpha(1-n)dr(X) = dr(\xi)T(X) + r(\nabla_{\xi}T)(X) + rT(X)(\delta T) - dr(X)$$
 (11)

where $\delta T = (\nabla_{e_i} T)(e_i)$.

Again $Y = Z = \xi$ in (2.4), we have

$$r(\nabla_{\xi}T)(X) = (\alpha - 1)[dr(\xi)T(X) - dr(X)] \tag{12}$$

Substituting (2.6) in (2.5), we get

$$\alpha(n-2)dr(X) + \alpha dr(\xi)T(X) + rT(X)(\delta T) = 0$$
(13)

Now putting $X = \xi$ in (2.7), it yields

$$\alpha(n-1)dr(\xi) + r(\delta T) = 0 \tag{14}$$

From (2.7) and (2.8) it follows that

$$\alpha \ dr(X) = \alpha \ dr(\xi)T(X)$$

since $\alpha \neq 0$, we have

$$dr(X) = dr(\xi)T(X) \tag{15}$$

Putting $Y = \xi$ in (2.4) and using (2.9) we get

$$(\nabla_X T)(Z) - (\nabla_Z T)(X) = 0 \tag{16}$$

since $r \neq 0$.

This means that the 1-form T defined by $g(X,\xi)=T(X)$ is closed, i.e., dT(X,Y)=0.

Hence it follows that

$$g(\nabla_X \xi, Y) = g(\nabla_Y \xi, X) \tag{17}$$

for all X.

Now putting $Y = \xi$ in (2.11), we obtain

$$g(\nabla_X \xi, \xi) = g(\nabla_{\xi} \xi, X) \tag{18}$$

Since $g(\nabla_X \xi, \xi) = 0$, from (2.12) it follows that $g(\nabla_{\xi} \xi, X) = 0$ for all X.

Hence $\nabla_{\xi}\xi=0$. This means that the integral curves of the vector field ξ are geodesic.

Theorem No 2.2. In a pseudo projectively flat manifold satisfying

$$S(X,Y) = rT(X)T(Y)$$

under the assumption of $r \neq 0$, the vector field ξ is a proper concircular vector field.

Proof. From (2.6), by virtue of (2.9) we get

$$(\nabla_{\xi}T)(X) = 0 \tag{19}$$

From (2.9) and (2.10) in (2.4), we get

$$r[T(Z)(\nabla_X T)(Y) - (\nabla_Z T)(Y)T(X)] = \alpha \ dr(\xi)[g(Y,Z)T(X) - g(X,Y)T(Z)]$$

Now putting $Z = \xi$ in the above expression, we have

$$(\nabla_X T)(Y) = -\frac{\alpha}{r} dr(\xi) [T(X)T(Y) - g(X,Y)]$$
(20)

If we consider the scalar function $f = \frac{\alpha}{r} dr(\xi)$, differentiating covariantly along X We get

$$(\nabla_X f) = \frac{\alpha}{r^2} [dr(\xi)T(\nabla_X \xi)r - dr(\xi)dr(X)] + \frac{\alpha}{r} d^2 r(\xi, X)$$
 (21)

From (3.9) it follows that

$$d^2r(Y,X) = d^2r(\xi,Y)T(X) + dr(\xi)T(\nabla_Y\xi)T(X) + dr(\xi)(\nabla_YT)(X)$$

from which we get

$$d^{2}r(\xi, Y)T(X) = d^{2}r(\xi, X)T(Y)$$
(22)

Now putting $X = \xi$ in (2.16) we obtain $d^2r(\xi, Y) = d^2r(\xi, \xi)T(Y)$ since $T(\xi) = 1$.

Thus from (2.15) by using (2.9) it follows that

$$(\nabla_X f) = \mu \ T(X) \tag{23}$$

where $\mu = \frac{\alpha}{r} [d^2 r(\xi, \xi) - \frac{dr(\xi)}{r} dr(\xi)]$

By considering $\omega(X) = fT(X)$, (2.14) it can be written as

$$(\nabla_X T)(Y) = -fg(X, Y) + \omega(X)T(Y) \tag{24}$$

since T is closed, ω is obviously closed.

This means that the vector field ξ defined by $g(X,\xi) = T(X)$ is a proper concircular vector field ([4], [6]).

Theorem No 2.3. If a pseudo projectively flat manifold satisfies S(X,Y) = rT(X)T(Y) under the assumption of $r \neq 0$, the manifold is a locally product manifold.

Proof. From (2.18) it follows that

$$\nabla_X \xi = -fX + \omega(X)\xi \tag{25}$$

Let ξ^{\perp} denote the (n-1) dimensional distribution in a pseudo projectively flat manifold orthogonal to ξ .

If X and Y belong to ξ^{\perp} , then

$$g(X,\xi) = 0 \tag{26}$$

and

$$g(Y,\xi) = 0 \tag{27}$$

Since $(\nabla_X g)(Y, \xi) = 0$, it follows from (2.19) and (2.21) that

$$-g(\nabla_X Y, \xi) = +g(\nabla_X \xi, Y) = -fg(X, Y)$$

Similarly, we getm

$$-g(\nabla_Y X, \xi) = +g(\nabla_Y \xi, X) = -fg(X, Y).$$

Hence we have

$$g(\nabla_X Y, \xi) = g(\nabla_Y X, \xi) \tag{28}$$

Now $[X,Y] = \nabla_X Y - \nabla_Y X$ and therefore by (2.22) we obtain $g([X,Y],\xi) = 0$.

Hence [X,Y] is orthogonal to ξ ; i.e., [X,Y] belongs to ξ^{\perp} .

Thus the distribution is involutively by [1]. Hence from Frobenius' theorem on [1] it follows that ξ^{\perp} is integrable.

This implies the pseudo projectively flat manifold is a locally product manifold.

Theorem No 2.4. A pseudo projectively flat manifold satisfying S(X,Y) = rT(X)T(Y) under the assumption of $r \neq 0$ can be expressed as a locally warped product IXe^qM^* , where M^* is an Einstein manifold.

Proof. If a pseudo projectively flat manifold satisfies S(X,Y) = rT(X)T(Y) under the assumption of $r \neq 0$, then in view of proposition 2.1, theorem 2.2 and theorem 2.3 we obtain

$$g(\nabla_X Y, \xi) = -(\nabla_X T)(Y)$$

for the local vector fields X, Y belonging to ξ^{\perp} .

Then from (2.17) the second fundamental form k for each leaf satisfies

$$k(X,Y) = fg(X,Y) = -\frac{\alpha}{r} dr(\xi)g(X,Y).$$

Hence we know that each leaf is totally umbilic. Therefore each leaf is a manifold of constant curvature. Hence it must be a locally warped product IXe^qM^* , where M^* is a Einstein manifold (by [6], [3]).

References

- [1] Brickell F. and Clark R.S., *Differentiable manifold*, Van Nostrand Reinhold Comp. London(1978).
- [2] De U.C. and Matsuyama Y., Quasi-conformally flat manifolds satisfying certain condition on the Ricci tensor, SUT Journ. of Mathematics, Vol.42, No.2, (2006), pp.295-303.
- [3] Gebarowski A., Nearly conformally symmetric warped product manifolds, Bulletin of the Inst. of Math. Academia Sinica 4, (1992), pp.359-371.
 - [4] Schouten J.A., Ricci-Calculus, Springer, Berlin (1954).
- [5] Tarafdar M., Bhattacharyya A. and Debnath D., A type of pseudo projective and Recurrent trans-Sasakian Manifold, Anal.Still.Ale.Univ."AL.I.CUZA", IASI.Tomul LII, S.I.Matematica, f.2, (2006), pp.417-422.
- [6] Yano, K, Concircular Geometry I, Proc.Imp.Acad.Tokyo 16, (1940), pp.195-200.

Bandana Das and Arindam Bhattacharyya Department of Mathematics Jadavpur University Kolkata-700032, INDIA. email:badan06@yahoo.co.in; arin1968@indiatimes.com