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ON A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY
RUSCHEWEYH DERIVATIVE AND GENERALIZED SALAGEAN

OPERATOR

Alina Alb Lupaş

Abstract. Let A (p, n) = {f ∈ H(U) : f(z) = zp +
∑∞

j=p+n ajz
j , z ∈ U},

with A (1, 1) = A. We consider in this paper the operator RDn
λ,γ : A → A, defined

by RDn
λ,γf(z) := (1− γ) Rnf (z) + γDn

λf(z), where Dn
λf (z) = Dλ

(
Dn−1

λ f (z)
)

is
the generalized Sălăgean operator and (n + 1)Rn+1f (z) = z(Rnf (z))′ + nRnf (z),
n ∈ N0, N0 = N ∪ {0} is the Ruscheweyh operator. By making use of the above
mentioned differential operator, a new subclass of univalent functions in the open
unit disc is introduced. The new subclass is denoted by RDλ(n, µ, α, λ). Parallel
results, for some related classes including the class of starlike and convex functions
respectively, are also obtained.

2000 Mathematics Subject Classification: 30C45

1. Introduction and definitions

Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and
H(U) the space of holomorphic functions in U .

Let
A (p, n) = {f ∈ H(U) : f(z) = zp +

∞∑
j=p+n

ajz
j , z ∈ U},

with A (1, n) = An, A (1, 1) = A1 = A and

H[a, n] = {f ∈ H(U) : f(z) = a + anzn + an+1z
n+1 + . . . , z ∈ U},

where p, n ∈ N, a ∈ C.
Let S denote the subclass of functions that are univalent in U .
By S∗ (α) we denote a subclass of A consisting of starlike univalent functions of

order α, 0 ≤ α < 1 which satisfies

Re
(

zf ′(z)
f(z)

)
> α, z ∈ U. (1)
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Further, a function f belonging to S is said to be convex of order α in U , if and
only if

Re
(

zf ′′(z)
f ′(z)

+ 1
)

> α, z ∈ U, (2)

for some α, (0 ≤ α < 1) . We denote by K(α) the class of functions in S which are
convex of order α in U and denote by R(α) the class of functions in A which satisfy

Re f ′(z) > α, z ∈ U. (3)

It is well known that K(α) ⊂ S∗(α) ⊂ S.
If f and g are analytic functions in U , we say that f is subordinate to g, written

f ≺ g, if there is a function w analytic in U , with w(0) = 0, |w(z)| < 1, for all z ∈ U
such that f(z) = g(w(z)) for all z ∈ U . If g is univalent, then f ≺ g if and only if
f(0) = g(0) and f(U) ⊆ g(U).

Definition 1. (Al Oboudi [5]) For f ∈ A, λ ≥ 0 and n ∈ N, the operator Dn
λ is

defined by Dn
λ : A → A,

D0
λf (z) = f (z)

D1
λf (z) = (1− λ) f (z) + λzf ′(z) = Dλf (z)

...

Dn+1
λ f(z) = (1− λ) Dn

λf (z) + λz (Dn
λf (z))′ = Dλ (Dn

λf (z)) , for z ∈ U.

Remark 1. If f ∈ A and f(z) = z +
∑∞

j=2 ajz
j, then

Dn
λf (z) = z +

∞∑
j=2

[1 + (j − 1) λ]n ajz
j ,

for z ∈ U .

Remark 2. For λ = 1 in the above definition we obtain the Sălăgean differential
operator [10].

Definition 2. (Ruscheweyh [9]) For f ∈ A and n ∈ N, the operator Rn is
defined by Rn : A → A,

R0f (z) = f (z)
R1f (z) = zf ′ (z)

...

(n + 1) Rn+1f (z) = z (Rnf (z))′ + nRnf (z) , for z ∈ U.
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Remark 3. If f ∈ A and f(z) = z+
∑∞

j=2 ajz
j, then Rnf (z) = z+

∑∞
j=2 Cn

n+j−1ajz
j,

for z ∈ U .

To prove our main theorem we shall need the following lemma.

Lemma 1. [8] Let p be analytic in U with p(0) = 1 and suppose that

Re
(

1 +
zp′(z)
p(z)

)
>

3α− 1
2α

, z ∈ U. (4)

Then Re p(z) > α for z ∈ U and 1/2 ≤ α < 1.

2. Main results

Definition 3. For a function f ∈ A we define the differential operator

RDn
λ,γf(z) = (1− γ) Rnf (z) + γDn

λf(z), (5)

where n ∈ N0, N0 = N ∪ {0}.

Remark 4. For λ = 1 the above defined operator was introduced in [1].

Definition 4. We say that a function f ∈ A is in the class RDγ(n, µ, α, λ),
n ∈ N, µ ≥ 0, α ∈ [0, 1), γ ≥ 0 if∣∣∣∣∣∣RDn+1

λ,γ f(z)

z

(
z

RDn
λ,γf(z)

)µ

− 1

∣∣∣∣∣∣ < 1− α, z ∈ U. (6)

Remark 5. The family RDγ(n, µ, α, λ) is a new comprehensive class of ana-
lytic functions which includes various new classes of analytic univalent functions
as well as some very well-known ones. For example, RD1(n, µ, α, λ) was stud-
ied in [6], RD0(n, µ, α, λ) was studied in [3], RDγ(n, µ, α, 1) was studied in [4],
RD1 (0, 1, α, 1) = S∗ (α) , RD1 (1, 1, α, 1) = K (α) and RD1 (0, 0, α, 1) = R (α). An-
other interesting subclass is the special case RD1(0, 2, α, 1)=B (α) which has been
introduced by Frasin and Darus [7] and also the class RD1(0, µ, α, 1) = B(µ, α)
which has been introduced by Frasin and Jahangiri [8].
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In this note we provide a sufficient condition for functions to be in the class
RDγ(n, µ, α, λ). Consequently, as a special case, we show that convex functions of
order 1/2 are also members of the above defined family.

Theorem 2. For the function f ∈ A, n ∈ N, µ ≥ 0, 1/2 ≤ α < 1 if

(n + 2)
RDn+2

λ,γ f (z)

RDn+1
λ,γ f (z)

− µ (n + 1)
RDn+1

λ,γ f (z)

RDn
λ,γf (z)

−

γ

(
n + 2− 1

λ

)
Dn+2

λ f (z)−Dn+1
λ f (z)

RDn+1
λ,γ f (z)

+ µγ

(
n + 1− 1

λ

)
Dn+1

λ f (z)−Dn
λf (z)

RDn
λ,γf (z)

+ (µ− 1) (n + 1) ≺ 1 + βz, z ∈ U, (7)

where
β =

3α− 1
2α

,

then f ∈ RDγ(n, µ, α, λ).

Proof. If we consider

p(z) =
RDn+1

λ,γ f (z)

z

(
z

RDn
λ,γf(z)

)µ

, (8)

then p(z) is analytic in U with p(0) = 1. A simple differentiation yields

zp′(z)
p(z)

= (n + 2)
RDn+2

λ,γ f (z)

RDn+1
λ,γ f (z)

− µ (n + 1)
RDn+1

λ,γ f (z)

RDn
λ,γf (z)

− (9)

γ

(
n + 2− 1

λ

)
Dn+2

λ f (z)−Dn+1
λ f (z)

RDn+1
λ,γ f (z)

+ µγ

(
n + 1− 1

λ

)
Dn+1

λ f (z)−Dn
λf (z)

RDn
λ,γf (z)

+µ (n + 1)− (n + 2) .

Using (7) we get

Re
(

1 +
zp′(z)
p(z)

)
>

3α− 1
2α

.

Thus, from Lemma 1 we deduce that

Re

RDn+1
λ,γ f(z)

z

(
z

RDn
λ,γf(z)

)µ
 > α.
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Therefore, f ∈ RDγ(n, µ, α, λ), by Definition 4.

As a consequence of the above theorem we have the following interesting corol-
laries [2].

Corollary 3. If f ∈ A and

Re

{
2zf

′′
(z) + z2f

′′′(z)
f ′(z) + zf ′′(z)

− zf ′′(z)
f ′(z)

}
> −1

2
, z ∈ U, (10)

then

Re
{

1 +
zf ′′(z)
f ′(z)

}
>

1
2
, z ∈ U. (11)

That is, f is convex of order 1
2 , or f ∈ RD1

(
1, 1, 1

2 , 1
)
.

Corollary 4. If f ∈ A and

Re

{
2zf

′′(z) + z2f
′′′(z)

f ′(z) + zf ′′(z)

}
> −1

2
, z ∈ U, (12)

then f ∈ RD1
(
1, 0, 1

2 , 1
)
, that is

Re
{
f ′(z) + zf ′′(z)

}
>

1
2
, z ∈ U. (13)

Corollary 5. If f ∈ A and

Re
{

1 +
zf ′′(z)
f ′(z)

}
>

1
2
, z ∈ U, (14)

then
Re f ′(z) >

1
2
, z ∈ U. (15)

In another words, if the function f is convex of order 1
2 then f ∈ RD1(0, 0, 1

2 , 1)
≡ R

(
1
2

)
.

Corollary 6. If f ∈ A and

Re
{

zf ′′(z)
f ′(z)

− zf ′(z)
f(z)

}
> −3

2
, z ∈ U, (16)
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then f is starlike of order 1
2 , hence f ∈ RD1(0, 1, 1

2 , 1).
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functions, Analele Universităţii din Oradea, Tom XV, 2008, 61-64.

[9] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math.
Soc., 49(1975), 109-115.
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