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1. Introduction and preliminaries

Let S denote the class of functions f that are analytic in the open unit disk
D = {z ∈ C : |z| < 1} of the form

f(z) = z +
∞∑

k=2

akz
k, (1)

and consider the subclass T consisting of functions f which are univalent in D and
are of the form

f(z) = z −
∞∑

k=2

|ak|zk. (2)

For α ≥ 0, 0 ≤ β < 1, c ≥ −1 and δ ≥ 0, we let Sδ
c (α, β) be the subclass of S

consisting of functions of the form (1) and satisfying the condition

Re

{
Kδ

c(f)
z[Kδ

c(f)]′

}
> α

∣∣∣∣∣ Kδ
c(f)

z[Kδ
c(f)]′

− 1

∣∣∣∣∣+ β. (3)

The operator Kδ
c(f) is the Komato operator [3] defined by

Kδ
c(f) =

∫ 1

0

(c + 1)δ

Γ(δ)
tc
(

log
1
t

)δ−1 f(tz)
t

dt.
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We also let
T Sδ

c (α, β) = Sδ
c (α, β) ∩ T . (4)

By applying a simple calculation for f ∈ Sδ
c (α, β) we get

Kδ
c(f) = z −

∞∑
k=2

(
c + 1
c + k

)δ

|ak|zk. (5)

The family T Sδ
c (α, β) is of special interest for contains many well-known as well as

new classes of analytic functions. For example T S0
c (0, β) is the family of starlike

functions of order at most 1
β .

In our present investigation, we need the following elementary Lemmas.
Lemma 1.1. If α ≥ 0, 0 ≤ β < 1 and γ ∈ R then Re ω > α|ω − 1|+ β if and

only if Re [ω(1 + αeiγ)− αeiγ ] > β where ω be any complex number.
Lemma 1.2. With the same condition in Lemma 1.1, Re ω > α if and only if

|ω − (1 + α)| < |ω + (1− α)|.
The main aim of this paper is to verify coefficient bounds and extreme points

of the general class T Sδ
c (α, β). Furthermore, we obtain neighborhood property for

functions in T Sδ
c (α, β). Also partial sums of functions in the class Sδ

c (α, β) are
obtained.

2.Coefficient bounds for Sδ
c (α, β)

In this section we find a necessary and sufficient condition and extreme points
for functions in the class T Sδ

c (α, β).
Theorem 2.1. If

∞∑
k=2

[(1 + α)− k(α + β)]
(1− β)

(
c + 1
c + k

)δ

ak < 1, (6)

then f(z) ∈ Sδ
c (α, β).

Proof. Let (6) hold, we will show that (3) is satisfied and so f(z) ∈ Sδ
c (α, β). By

Lemma 1.2, it is enough to show that

|ω − (1 + α|ω − 1|+ β)| < |ω + (1− α|ω − 1| − β)|,

where ω = Kδ
c(f)

z[Kδ
c(f)]′

. By letting B = z[Kδ
c(f)]′

|z[Kδ
c(f)]′| and by using (5) we may write

R = |ω + 1− β − α|ω − 1||

=
1

|z[Kδ
c(f)]′|

∣∣∣∣∣2z − βz −
∞∑

k=2

[1 + (1− β)k + α− αak]
(

c + 1
c + k

)δ

akz
k

∣∣∣∣∣ .
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This implies that

R >
|z|

|z[Kδ
c(f)]′|

[
2− β −

∞∑
k=2

[k + (1 + α)− k(α + β)]
(

c + 1
c + k

)δ

ak

]
.

Similarly, if L = |ω − 1− α|ω − 1| − β| we get

L <
|z|

|z[Kδ
c(f)]′|

[
β +

∞∑
k=2

[−k + (1 + α)− k(α + β)]
(

c + 1
c + k

)δ

ak

]
.

It is easy to verify that R− L > 0 if (6) holds and so the proof is complete.
Theorem 2.2. Let f ∈ T . Then f is in T Kδ

c(α, β) if and only if

∞∑
k=2

[(1 + α)− k(α + β)]
1− β

(
c + 1
c + k

)δ

ak < 1.

Proof. Since T is the subclass of S and T Sδ
c (α, β) = Sδ

c (α, β) ∩ T , and using
Theorem 2.1, we need only to prove the necessity of theorem. Suppose that f ∈
T Kδ

c(α, β). By Lemma 1.1, and letting ω = Kδ
c(f)

z[Kδ
c(f)]′

in (3) we obtain

Re (ω(1 + αeiγ)− αeiγ) > β

or

Re

 z −
∑∞

k=2

(
c+1
c+k

)δ
akz

k

z

(
1−

∑∞
k=2 k

(
c+1
c+k

)δ
akzk−1

)(1 + αeiγ)− αeiγ − β

 > 0,

then

Re

1− β −
∑∞

k=2(1− βk)
(

c+1
c+k

)δ
akz

k − αeiγ ∑∞
k=2(1− k)

(
c+1
c+k

)δ
akz

k−1(
1−

∑∞
k=2 k

(
c+1
c+k

)δ
akzk−1

)
 > 0.

The above inequality must hold for all z in D. Letting z = re−iθ where 0 ≤ r < 1
we obtain

Re

1− β −
∑∞

k=2(1− βk)
(

c+1
c+k

)δ
akr

k − αeiγ ∑∞
k=2(1− k)

(
c+1
c+k

)δ
akr

k−1(
1−

∑∞
k=2 k

(
c+1
c+k

)δ
akrk−1

)
 > 0.
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By letting r → 1 through half line z = re−iθ (0 ≤ r < 1) and the mean value
theorem we have

Re

[
(1− β)−

∞∑
k=2

[(1− βk)− α(1− k)]
(

c + 1
c + k

)δ

ak] > 0

]
.

Therefore ∞∑
k=2

[(1− βk) + α(1− k)]
(

c + 1
c + k

)δ

ak < 1− β.

This implies that
∞∑

k=2

(1 + α)− k(α + β)
(1− β)

(
c + 1
c + k

)δ

ak < 1,

and the proof is complete.
Theorem 2.3. Let f1(z) = z and

fk(z) = z − 1− β

[(1 + α)− k(α + β)]

(
c + k

c + 1

)δ

zk, k ≥ 2. (7)

Then f ∈ T Sδ
c (α, β) if and only if it can be expressed in the form f(z) =

∑∞
k=1 ηkfk(z)

where ηk ≥ 0 and
∑∞

k=1 ηk = 1. In particular, the extreme points of T Sδ
c (α, β) are

the functions defined by (7).
Proof. Let f be expressed as in the above theorem. This means that we can

write

f(z) =
∞∑

k=1

ηkfk(z) = η1f1(z) +
∞∑

k=2

ηkfk(z)

= η1z +
∞∑

k=2

ηkz −
∞∑

k=2

(1− β)
[(1 + α)− k(α + β)]

(
c + k

c + 1

)δ

ηkz
k

= z
∞∑

k=1

ηk −
∞∑

k=2

tkz
k,

where tk = (1−β)
[(1+α)−k(α+β)]

(
c+k
c+1

)δ
ηk. Therefore f ∈ T Sδ

c (α, β) since

∞∑
k=2

[(1 + α)− k(α + β)]
1− β

tk

(
c + 1
c + k

)δ

=
∞∑

k=2

ηk = 1− η1 < 1.

Conversely, suppose that f ∈ T Sδ
c (α, β). Then by (6), we have

ak <
1− β

[(1 + α)− k(α + β)]

(
c + k

c + 1

)δ

, k ≥ 2.
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So

f(z) = z −
∞∑

k=2

1− β

[(1 + α)− k(α + β)]

(
c + k

c + 1

)δ

ηkz
k

= z −
∞∑

k=2

ηk(z − fk(z))

=

(
1−

∞∑
k=2

ηk

)
z −

∞∑
k=2

ηkfk(z)

= η1z −
∞∑

k=2

ηkfk(z) =
∞∑

k=1

ηkfk(z).

This completes the proof.

3.Neighborhood Property

In this section we study neighborhood property for functions in the class T Sδ
c (α, β).

This concept was introduced by Goodman [2] and Ruscheweyh [6]. See also [1], [4],
[5], and [7].

Definition 3.1. For functions f belong f to S of the form (1) and γ ≥ 0, we
define η − γ-neighborhood of f by

N η
γ (f) = {g(z) ∈ S : g(z) = z +

∞∑
k=2

bkz
k,

∞∑
k=2

kη+1|ak − bk| ≤ γ},

where η is a fixed positive integer.
By using the following lemmas we will investigate the η − γ-neighborhood of

functions in T Sδ
c (α, β).

Lemma 3.2. Let m ≥ 0 and −1 ≤ θ < 1. If g(z) = z +
∑∞

k=2 bkz
k satisfies

∞∑
k=2

kρ+1|bk| ≤
1− θ

1 + α
,

then g(z) ∈ Sρ
c (α, θ).

Proof. By using of Theorem 2.1, it is sufficient to show that

(1 + α)− k(α + θ)
1− θ

(
ρ + 1
ρ + k

)δ

=
kρ+1

1− θ
(1 + α).

But
(1 + α)− k(α + θ)

1− θ

(
ρ + 1
ρ + k

)δ

≤ 1 + α

1− θ

(
ρ + 1
ρ + k

)δ

.
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Therefore it is enough to prove that

Q(k, ρ) =

(
ρ+1
ρ+k

)δ

kρ+1
≤ 1.

The result follows because the last inequality holds for all k ≥ 2.
Lemma 3.3. Let f(z) = z −

∑∞
k=2 akz

k ∈ T , − 1 ≤ β < 1, α ≥ 0 and ε ≥ 0. If
f(z)+εz

1+ε ∈ T Sδ
c (α, β) then

∞∑
k=2

kρ+1ak ≤
2ρ+1(1− β)(1 + ε)

(1− α− 2β)

(
c + 2
c + 1

)δ

where either ρ = 0 and c ≥ o or ρ = 1 and 1 ≤ c ≤ 2. The result is sharp with the
extremal function

f(z) = z − (1− β)(1 + ε)
(1− α− 2β)

(
c + 2
c + 1

)δ

z2, (z ∈ D).

Proof. Letting g(z) = f(z)+εz
1+ε we have

g(z) = z −
∞∑

k=2

ak

1 + ε
zk, (z ∈ D).

In view of theorem 2.3, g(z) =
∑∞

k=1 ηkgk(z) where ηk ≥ 0,
∑∞

k=1 ηk = 1,

g1(z) = z and gk(z) = z − (1− β)(1 + ε)
[(1 + α)− k(α + β)]

(
c + k

c + 1

)δ

zk (k ≥ 2).

So we obtain

g(z) = η1z +
∞∑

k=2

ηk

[
z − (1− β)(1 + ε)

[(1 + α)− k(α + β)]

(
c + k

c + 1

)δ

zk

]

= z −
∞∑

k=2

ηk

(
(1− β)(1 + ε)

[(1 + α)− k(α + β)]

(
c + k

c + 1

)δ
)

zk.

Since ηk ≥ 0 and
∑∞

k=2 ηk ≤ 1, it follows that

∞∑
k=2

kρ+1ak ≤ sup
k≥2

kρ+1

[
(1− β)(1 + ε)

[(1 + α)− k(α + β)]

(
c + k

c + 1

)δ
]

.

Since whenever ρ = 0 and c ≥ 0 or ρ = 1 and 1 ≤ c ≤ 2 we conclude

W (k, ρ, α, β, ε, c, δ) = kρ+1

[
(1− β)(1 + ε)

[(1 + α)− k(α + β)]

(
c + k

c + 1

)δ
]

,
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is a decreasing function of k, the result will follow. So the proof is complete.
Theorem 3.4. Let either ρ = 0 and c ≥ 0 or ρ = 1 and 1 ≤ c ≤ 2. Suppose

−1 ≤ β < 1, and

−1 ≤ θ <
(1− α− 2β)(c + 1)δ − 2ρ+1(1− β)(1 + ε)(c + 2)δ(1 + α)

(1− α− 2β)(c + 1)δ(1 + α)
,

f(z) ∈ T and f(z)+εz
1+ε ∈ T Sδ

c (α, β). Then the η − γ-neighborhood of f is the subset
of Sη

c (α, θ), where

γ =
(1− θ)(1− α− 2β)(c + 1)δ − 2η+1(1− β)(1 + ε)(c + 2)δ(1 + α)

(1− α− 2β)(c + 1)δ(1 + α)
.

The result is sharp.
Proof. For f(z) = z −

∑∞
k=2 |ak|zk, let g(z) = z +

∑∞
k=2 bkz

k be in N η
γ (f). So by

Lemma 3.3, we have

∞∑
k=2

kη+1|bk| =
∞∑

k=2

kη+1|ak − bk − ak|

≤ γ +
2η+1(1− β)(1 + ε)

(1− α− 2β)

(
c + 2
c + 1

)δ

.

By using Lemma 3.2, g(z) ∈ Sη
c (α, β) if

γ +
2η+1(1− β)(1 + ε)

(1− α− 2β)

(
c + 2
c + 1

)δ

≤ 1− θ

1 + α
.

That is,

γ ≤ (1− θ)(1− α− 2β)(c + 1)δ − 2η+1(1− β)(1 + ε)(c + 2)δ(1 + α)
(1− α− 2β)(c + 1)δ(1 + α)

and the proof is complete.

4.Partial Sums

In this section we verify some properties of partial sums of functions in the class
Sδ

c (α, β). (see [5] and [8])
Theorem 4.1. Let f(z) ∈ Sδ

c (α, β), and define the partial sums f1(z) and fn(z)
by

f1(z) = z and fn(z) = z +
n∑

k=2

akz
k (n ∈ N , n > 1). (8)
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If
∞∑

k=2

ck|ak| ≤ 1 (9)

where

ck =
[(1 + α)− k(α + β)]

1− β

(
c + 1
c + k

)δ

. (10)

Then fk(z) ∈ Sδ
c (α, β). Moreover

Re

{
f(z)
fn(z)

}
> 1− 1

cn+1
, (z ∈ D, n ∈ N ) (11)

Re

{
fn(z)
f(z)

}
>

cn+1

1 + cn+1
. (12)

Proof. It is easy to show that f1(z) = z ∈ Sδ
c (α, β). So by Theorem 3.3, and

condition (9), we have N η
1 (z) ⊂ Sδ

c (α, β), so fk ∈ Sδ
c (α, β). Next, for the coefficient

ck it is easy to show that
ck+1 > ck > 1.

Therefore by using (9) we obtain
n∑

k=2

|ak|+ cn+1

∞∑
k=n+1

|ak| ≤
∞∑

k=2

ck|ak| ≤ 1. (13)

By putting

h1(z) = cn+1

{
f(z)
fn(z)

−
(

1− 1
cn+1

)}
= 1 + cn+1

(
f(z)
fn(z)

− 1
)

= 1 + cn+1

(
z +

∑∞
k=2 akz

k

z +
∑n

k=2 akzk
− 1

)
= 1 + cn+1

(
1 +

∑∞
k=2 akz

k−1

1 +
∑n

k=2 akzk−1
− 1

)

= 1 + cn+1

[
1 +

∑∞
k=2 akz

k−1 − 1−
∑n

k=2 akz
k−1

1 +
∑∞

k=2 akzk−1

]

= 1 +
cn+1

∑∞
k=n+1 akz

k−1

1 +
∑n

k=2 akzk−1
,

and using (13), for all z ∈ D we have

∣∣∣∣h1(z)− 1
h1(z) + 1

∣∣∣∣ =
∣∣∣∣∣∣∣∣

cn+1

∑∞
k=n+1

akzk−1

1+
∑n

k=2
akzk−1

2 +
cn+1

∑∞
k=n+1

akzk−1

1+
∑n

k=2
akzk−1

∣∣∣∣∣∣∣∣ ≤
cn+1

∑∞
k=n+1 |ak|

2− 2
∑n

k=2 |ak| − cn+1
∑∞

k=n+1 |ak|
≤ 1,
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which proves (11). Similarly, if we put

h2(z) =
{

fn(z)
f(z)

− cn+1

1 + cn+1

}
(1 + cn+1)

= 1−
(1 + cn+1)

∑∞
k=n+1 akz

k−1

1 +
∑∞

k=2 akzk−1
,

and using (13) we obtain ∣∣∣∣h2(z)− 1
h2(z) + 1

∣∣∣∣ ≤ 1, (z ∈ D),

which yields the condition (12). So the proof is complete.
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