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A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY
DIFFERENTIAL SĂLĂGEAN OPERATOR

Alina Alb Lupaş

Abstract. By means of the Sălăgean differential operator we define a new class
BS(p, m, µ, α) involving functions f ∈ A (p, n). Parallel results, for some related
classes including the class of starlike and convex functions respectively, are also
obtained.
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1. Introduction and definitions

Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and
H(U) the space of holomorphic functions in U .

Let
A (p, n) = {f ∈ H(U) : f(z) = zp +

∞∑
j=p+n

ajz
j , z ∈ U}, (1)

with A (1, n) = An and

H[a, n] = {f ∈ H(U) : f(z) = a + anzn + an+1z
n+1 + . . . , z ∈ U},

where p, n ∈ N, a ∈ C.
Let S denote the subclass of functions that are univalent in U .
By S∗n (p, α) we denote a subclass of A (p, n) consisting of p-valently starlike

functions of order α, 0 ≤ α < p which satisfies

Re
(

zf ′(z)
f(z)

)
> α, z ∈ U. (2)

Further, a function f belonging to S is said to be p-valently convex of order α
in U , if and only if

Re
(

zf ′′(z)
f ′(z)

+ 1
)

> α, z ∈ U (3)

for some α, (0 ≤ α < p) . We denote by Kn(p, α) the class of functions in S which
are p-valently convex of order α in U and denote by Rn(p, α) the class of functions
in A (p, n) which satisfy

Re f ′(z) > α, z ∈ U. (4)
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It is well known that Kn(p, α) ⊂ S∗n(p, α) ⊂ S.
If f and g are analytic functions in U , we say that f is subordinate to g, written

f ≺ g, if there is a function w analytic in U , with w(0) = 0, |w(z)| < 1, for all z ∈ U
such that f(z) = g(w(z)) for all z ∈ U . If g is univalent, then f ≺ g if and only if
f(0) = g(0) and f(U) ⊆ g(U).

Let Dm be the Sălăgean differential operator [7], Dm : A (p, n) → A (p, n), n ∈ N,
m ∈ N ∪ {0}, defined as

D0f (z) = f (z)
D1f (z) = Df(z) = zf ′(z)

Dmf(z) = D(Dm−1f(z)) = z
(
Dm−1f (z)

)′ , z ∈ U.

We note that if f ∈ A (p, n), then

Dmf (z) = zp +
∞∑

j=n+p
jmajz

j , z ∈ U.

To prove our main theorem we shall need the following lemma.

Lemma 1 [6] Let u be analytic in U with u(0) = 1 and suppose that

Re
(

1 +
zu′(z)
u(z)

)
>

3α− 1
2α

, z ∈ U. (5)

Then Re u(z) > α for z ∈ U and 1/2 ≤ α < 1.

2. Main results

Definition 1 We say that a function f ∈ A (p, n) is in the class BS(p, m, µ, α),
p, n ∈ N, m ∈ N ∪ {0}, µ ≥ 0, α ∈ [0, 1) if∣∣∣∣∣Dm+1f (z)

zp

(
zp

Dmf(z)

)µ

− p

∣∣∣∣∣ < p− α, z ∈ U. (6)

Remark 1 The family BS(p, m, µ, α) is a new comprehensive class of analytic func-
tions which includes various new classes of analytic univalent functions as well as
some very well-known ones. For example, BS(1, 0, 1, α)≡S∗n (1, α) , BS(1, 1, 1, α)≡Kn (1, α)
and BS(1, 0, 0, α)≡Rn (1, α). Another interesting subclass is the special case BS(1, 0, 2, α)≡B (α)
which has been introduced by Frasin and Darus [5] and also the class BS(1, 0, µ, α) ≡
B(µ, α) which has been introduced by Frasin and Jahangiri [6].
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In this note we provide a sufficient condition for functions to be in the class
BS(p, m, µ, α). Consequently, as a special case, we show that convex functions of
order 1/2 are also members of the above defined family.

Theorem 2 For the function f ∈ A (p, n) , p, n ∈ N, m ∈ N ∪ {0}, µ ≥ 0, 1/2 ≤
α < 1 if

Dm+2f (z)
Dm+1f (z)

− µ
Dm+1f (z)
Dmf (z)

+ p (µ− 1) + 1 ≺ 1 + βz, z ∈ U, (7)

where
β =

3α− 1
2α

, (8)

then f ∈ BS(p, m, µ, α).

Proof. If we consider

u(z) =
Dm+1f (z)

zp

(
zp

Dmf(z)

)µ

, (9)

then u(z) is analytic in U with u(0) = 1. A simple differentiation yields

zu′(z)
u(z)

=
Dm+2f (z)
Dm+1f (z)

− µ
Dm+1f (z)
Dmf (z)

+ p (µ− 1) . (10)

Using (7) we get

Re
(

1 +
zu′(z)
u(z)

)
>

3α− 1
2α

. (11)

Thus, from Lemma 1 we deduce that

Re

{
Dm+1f (z)

zp

(
zp

Dmf(z)

)µ
}

> α. (12)

Therefore, f ∈ BS(p, m, µ, α), by Definition 1.
As a consequence of the above theorem we have the following interesting corol-

laries.

Corollary 3 If f ∈ An and

Re
{

2zf ′′(z) + z2f ′′′(z)
f ′(z) + zf ′′(z)

− zf ′′(z)
f ′(z)

}
> −1

2
, z ∈ U, (13)

then

Re
{

1 +
zf ′′(z)
f ′(z)

}
>

1
2
, z ∈ U. (14)

That is, f is convex of order 1
2 .
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Corollary 4 [1] If f ∈ An and

Re
{

2z2f ′′(z) + z3f ′′′(z)
zf ′(z) + z2f ′′(z)

}
> −1

2
, z ∈ U, (15)

then
Re

{
f ′(z) + zf ′′(z)

}
>

1
2
, z ∈ U. (16)

Corollary 5 [1] If f ∈ An and

Re
{

1 +
zf ′′(z)
f ′(z)

}
>

1
2
, z ∈ U, (17)

then
Re f ′(z) >

1
2
, z ∈ U. (18)

In another words, if the function f is convex of order 1
2 , then f ∈ BS(1, 0, 0, 1

2) ≡
Rn

(
1, 1

2

)
.

Corollary 6 [1] If f ∈ An and

Re
{

zf ′′(z)
f ′(z)

− zf ′(z)
f(z)

}
> −3

2
, z ∈ U, (19)

then f is starlike of order 1
2 .
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[1] A. Alb Lupaş, A subclass of analytic functions defined by Ruscheweyh deriva-
tive, Acta Universitatis Apulensis, nr. 19/2009, 31-34.
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[3] A. Cătaş and A. Alb Lupaş, A note on a subclass of analytic functions de-
fined by differential Sălăgean operator, Buletinul Academiei de Ştiinţe a Republicii
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Open Problem in Complex Analysis, Vol. 1, No. 2, 14-18.

[5] B.A. Frasin and M. Darus, On certain analytic univalent functions, Internat.
J. Math. and Math. Sci., 25(5), 2001, 305-310.

262
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