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A CERTAIN CLASS OF QUADRATURES WITH HAT FUNCTION
AS A WEIGHT FUNCTION

Zlatko Udovičić

Abstract. We consider the quadrature rules of “practical type” (with five
knots) for approximately computation of the integral∫ 1

−1
(1− |x|) f(x)dx.

We proved that maximal algebraic degree of exactness for this type of formulas is
equal to five. At the end we gave numerical result.

2000 Mathematics Subject Classification: 65D30.

1. Introduction

Central role in the process of construction of the continuous, piecewise linear
approximation of the given function f(·) plays the so called hat function. Hat
function is defined in the following way:

h(x) =
{

1− |x|, x ∈ [−1, 1],
0, otherwise.

Thereat, the problem of calculation of the integral∫ 1

−1
h(x)f(x)dx.

is unavoidable. In this paper we are investigating a certain class of quadratures
(the so called quadratures of “practical type”) for approximate computation of the
previous integral. The paper was motivated by results recently published in [1]
and [2], where the same class of quadratures was considered, but without weight
function.
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We say that quadrature formula∫ 1

−1
h(x)f(x)dx =

5∑
i=1

Aif(xi) + R[f ] (1)

is of “practical type” if the following conditions hold:

1. coefficients Ak, 1 ≤ k ≤ 5 are symmetric, i.e. A1 = A5 and A2 = A4.

2. nodes xk, 1 ≤ k ≤ 5 are symmetric and rational numbers from the interval
[−1, 1], i.e. x1 = −r1, x2 = −r2, x3 = 0, x4 = r2 and x5 = r1, for some
r1, r2 ∈ (0, 1] ∩Q, r2 < r1 (as usuall, Q denotes the set of rational numbers).

Hence, quadratures of “practical type” have the following form:∫ 1

−1
h(x)f(x)dx = A(f(−r1) + f(r1)) +

B(f(−r2) + f(r2)) + Cf(0) + R[f ], (2)

for some r1, r2 ∈ (0, 1] ∩Q, r2 < r1.
Quadrature rule (1) has algebraic degree of exactness equal to m,m ∈ N, if and

only if R[p] = 0 whenever p(·) is a polynomial of degree not greater than m and
there exists the polynomial q(·), of degree m + 1, such that R[q] 6= 0. Our aim
is construction of the quadrature rules of “practical type” with maximal algebraic
degree of exactness.

We will finish this section with some well known facts from the theory of numer-
ical integration.

Lemma 1 Quadrature rule (1) (i.e. (2)) has algebraic degree of exactness equal to
m,m ∈ N if and only if R[xk] = 0 for all k ∈ {0, 1, . . . ,m− 1}.

Lemma 2 Quadrature rule (2) is exact for every odd function f(·) (i.e. R[f ] = 0
for every odd function f(·)).

From the previous lemmas follows that algebraic degree of exactness of the for-
mula (2) have to be odd.

Finally, with the choice

x1245 = ±

√
350±

√
35518

798
, x3 = 0

(expressions for the coefficients Ak, 1 ≤ k ≤ 5, are much more complicated, so we
omit them here) formula (1) attains maximal algebraic degree of exactness (which is
equal to nine), but this formula obviously is not of “practical type”. Hence, algebraic
degree of exactness of the formula (2) can not be greater than seven.
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2.Main result

Let us determine the coefficients A,B and C such that formula (2) has maximal
algebraic degree of exactness.

From the condition that formula is exact for f(x) = 1 (i.e. exact for any poly-
nomial of zero degree) simply follows

C = 1− 2(A + B).

Then formula (2) becomes∫ 1

−1
h(x)f(x)dx = A (f(−r1)− 2f(0) + f(r1)) +

B (f(−r2)− 2f(0) + f(r2)) +
f(0) + R[f ] (3)

and in accordance with the previous, this formula has algebraic degree of exactness
equal to one. Furthermore, conditions that the last formula is exact for f(x) = x2

and f(x) = x4 give the following system of linear equations

2r2
1A + 2r2

2B =
1
6

2r4
1A + 2r4

2B =
1
15

.

which has the solution

A =
2− 5r2

2

60r2
1(r

2
1 − r2

2)
and B =

2− 5r2
1

60r2
2(r

2
2 − r2

1)
. (4)

Hence, with this choice of the coefficients A and B formula (3) has algebraic
degree of exactness equal to five. Therein (in formula (3))

R[x6] =
1
28

− 2r2
1 − 5r2

1r
2
2 + 2r2

2

30
.

It is natural to ask is it possible to choose rational nodes r1 and r2 such that
formula (3) has algebraic degree of exactness equal to six, i.e. seven. Negative
answer to this question gives the following lemma.

Lemma 3 There is no numbers r1, r2 ∈ (0, 1] ∩Q such that

2r2
1 − 5r2

1r
2
2 + 2r2

2

30
=

1
28

. (5)
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Proof: Let us assume contrary, i.e. that r1 = a
b and r2 = c

d , for some a, b, c, d ∈ N
such that (a, b) = 1 and (c, d) = 1. Putting this in equality (5), after simplification,
gives

14(2a2d2 − 5a2c2 + 2b2c2) = 15b2d2, (6)

from which follows that b2d2 ≡ 0(mod 14), i.e. bd ≡ 0(mod 14). There are four cases
which can occur.

The case b ≡ 0(mod 14). Putting b = 14k for some k ∈ N, after simplification,
equality (6) becomes

a2(2d2 − 5c2) = 14k2(15d2 − 28c2).

Since (a, b) = 1, it has to be 2d2 − 5c2 ≡ 0(mod 14), so it also has to be
2d2 − 5c2 ≡ 0(mod 7). Furthermore, because of 2d2 − 5c2 = 7d2 − 5(c2 + d2),
it also has to be c2 + d2 ≡ 0(mod 7), and direct checking verify that the last
relation is impossible unless c ≡ 0(mod 7) and d ≡ 0(mod 7), which together
with an assumption (c, d) = 1. gives the contradiction.

The case b ≡ 0(mod 7) ∧ d ≡ 0(mod 2). Putting b = 7k1 and d = 2k2 for some
k1, k2 ∈ N, after simplification, equality (6) becomes

5a2c2 = 2(4a2k2
2 − 105k2

1k
2
2 + 49c2k2

1),

and from this follows that it has to be a ≡ 0(mod 2) (it can not be c ≡ 0(mod 2)
because of d ≡ 0(mod 2)). Furthermore, putting a = 2l for some l ∈ N the last
equality boecomes

2l2(5c2 − 8k2
2) = 7(7k2

1c
2 − 15k2

1k
2
2).

It can not be l ≡ 0(mod 7) (because of b ≡ 0(mod 7), a = 2l and (a, b) = 1), so
it has to be 5c2− 8k2

2 ≡ 0(mod 7). Direct checking verify that the last relation
is impossible unless c ≡ 0(mod 7) and k2 ≡ 0(mod 7). This fact, together with
d = 2k2 and (c, d) = 1 gives the contradiction.

The cases b ≡ 0(mod 2)∧ d ≡ 0(mod 7) and d ≡ 0(mod 14), because of symmetry of
the relation (6) can be proved analogue. This completes the proof. I

Let us estimate the error of the formula (3), under assumption that the coeffi-
cients A and B are given by the equalities (4). Let H5(·) be Hermite’s interpolating
polynomial which interpolates the function f(·) through the points ±r1,±r2 and 0,
where the node 0 has multiplicity two. Then (see for example [3], p. 55),

f(x)−H5(x) =
f (vi)(ξ(x))

6!
x2(x2 − r2

1)(x
2 − r2

2),
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and the error of the formula (3) is given by

R[f ] =
∫ 1

−1
h(x)

f (vi)(ξ(x))
6!

x2(x2 − r2
1)(x

2 − r2
2)dx

=
1

6 · 6!
f (vi)(η)(η2 − r2

1)(η
2 − r2

2),

for some η ∈ [−1, 1], assuming f(·) ∈ C6[−1, 1]. Let

Φ(η) = (η2 − r2
1)(η

2 − r2
2).

It is easy to check that

max
η∈[−1,1]

|Φ(η)| = max

{
|Φ(0)| ,

∣∣∣∣∣Φ(

√
r2
1 + r2

2

2
)

∣∣∣∣∣ , |Φ(1)|

}

= max
{

r2
1r

2
2,

(r2
1 − r2

2)
2

4
, (1− r2

1)(1− r2
2)

}
,

so the error of the formula (3) can be estimated in the following way

|R[f ]| ≤ M6

6 · 6!
max

{
r2
1r

2
2,

(r2
1 − r2

2)
2

4
, (1− r2

1)(1− r2
2)

}
, (7)

where M6 = maxx∈[−1,1]

∣∣f (vi)(x)
∣∣ .

3.Numerical result

Estimation (7) naturally imposes the following problem

F (r1, r2) = max
{

r2
1r

2
2,

(r2
1 − r2

2)
2

4
, (1− r2

1)(1− r2
2)

}
→ min ., (8)

where r1, r2 ∈ (0, 1] ∩ Q, r2 < r1. It is obvious that, for fixed r1 ∈ (0, 1] ∩ Q, the
function F (·, ·) attains its minimum in one of the intersection points among three
curves r2

1r
2
2,

(r2
1−r2

2)2

4 and (1− r2
1)(1− r2

2).

1. Curves r2
1r

2
2 and (r2

1−r2
2)2

4 (r1 is fixed) intersect each other at r2 = ±(1±
√

2)r1,
and since r2 /∈ Q we will not consider this case.

2. Similarly, curves (r2
1−r2

2)2

4 and (1− r2
1)(1− r2

2) (r1 is fixed) intersect each other

at r2 = ±
√

3r2
1 − 2± 2

√
2(r2

1 − 1), and again because of r2 /∈ Q we will not
consider this case.
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3. Finally, curves r2
1r

2
2 and (1− r2

1)(1− r2
2) (r1 is still fixed) intersect each other

at r2 =
√

1− r2
1, and we will look for the nodes r1 and r2 among “rational

points” from the unit circle.

In the following table we give some admissible values of the nodes r1 and r2 for
which the function F (·, ·) attains its local minimums. The corresponding rational
numbers are round off to the six decimal places.

r1 r2 F (r1, r2)

4
5

= 0.8
3
5

= 0.6 0.230400

21
29

= 0.724138
20
29

= 0.689655 0.249406

55
73

= 0.753425
48
73

= 0.657534 0.245424

72
97

= 0.742268
65
97

= 0.670103 0.247403

377
505

= 0.746535
336
505

= 0.665347 0.246715

987
1325

= 0.744906
884
1325

= 0.667170 0.246988

1292
1733

= 0.745528
1155
1733

= 0.666474 0.246885

6765
9077

= 0.745290
6052
9077

= 0.666740 0.246924

17711
23761

= 0.745381
15840
23761

= 0.666639 0.246909

23184
31105

= 0.745346
20737
31105

= 0.666677 0.246915

At the end, let us say that, by using any of the given choices for the nodes r1 and
r2, the error (7) can be estimated in the following way

|R[f ]| ≤ 0.6 · 10−4 ·M6.
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