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ABSTRACT. In this paper we study the Pareto-optimal solutions in convex
multi-objective optimization with compact and convex feasible domain. One
of the most important problems in multi-objective optimization is the investi-
gation of the topological structure of the Pareto sets. We present the problem
of construction of a retraction function of the feasible domain onto Pareto-
optimal set, if the objective functions are concave and one of them is strictly
quasi-concave on compact and convex feasible domain. Using this result it is
also proved that the Pareto-optimal and Pareto-front sets are homeomorphic
and they have the fixed point property.
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1. INTRODUCTION

The key idea of the present paper is first to show how we can construct
a retraction of the feasible domain onto Pareto-optimal set in multi-objective
optimization problem. Next, using this function we will prove that the Pareto-
optimal and Pareto-front sets are homeomorphic and they have the fixed point
property.

In a general form, the multi-objective optimization problem MOP(X, F) is
tofind x € X C R™, m > 1, so as to maximize F(z) = (fi(x), fo(2), ..., fu())
subject to x € X, where the feasible domain X is nonempty, convex and
compact, J = {1,2,...,n} is the index set, n > 2, f; : X — R is given
continuous objective function for all i € J.
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Definitions of the Pareto-optimal solutions can be formally stated as fol-
lows:

(a) A point € X is called Pareto-optimal solution if and only if there does
not exist a point y € X such that f;(y) > fi(z) for all i € J and fi(y) > fe(2)
for some k € J. Denote the set of the Pareto-optimal solutions of X by
Mazx(X, F) and it is called Pareto-optimal set. The set F(Max(X,F)) =
Eff(F(X)) is called Pareto-front set or efficient set.

(b) A point x € X is called weakly Pareto-optimal solution if and only if
there does not exist a point y € X such that f;(y) > fi(z) for all ¢ € J. Denote
the set of the weakly Pareto-optimal solutions of X by WMax(X, F') and it is
called weakly Pareto-optimal set. The set F(W Max(X, F)) = WEff(F(X))
is called weakly Pareto-front set or weakly efficient set.

One of the most important problems of optimization problem MOP(X, F')
is the investigation of the structure of the Pareto-optimal set Max (X, F') and
the Pareto-front set Ef f(F (X)), see also [7] and [11]. Considering topological
properties of the efficient set is started by [10].

As it is well-known the Pareto-optimal set Maz (X, F') is nonempty, the
weakly Pareto-optimal set W Maxz (X, F') is nonempty and compact, Maz (X, F) C
WMaz(X,F) and Eff(F(X)) = WEff(F(X)). It can be shown that both
sets Eff(F(X)) and WEf f(F(X)) lie in the boundary of the set F'(X), i.e.
F(Max(X,F)) C OF(X) and F(WMax(X, F)) C OF(X).

If the functions { f;}I; are strictly quasi-concave on X, then Maz(X, F) =
W Max(X, F) [7]. Therefore, under these assumptions the Pareto-optimal set
Max(X, F) is compact.

Topological properties of the Pareto solutions sets (Pareto-optimal and
Pareto-front) in multi-objective optimization have been discussed by several
authors. Connectedness and path-connectedness are considered in [1], [8], [12],
[13] and [15]. In [2], it is proved that the efficient set in strictly quasi-concave
multi-objective optimization with compact feasible domain is contractible. In
5], it is proved that the Pareto solutions sets in strictly quasi-concave multi-
objective optimization are contractible, if any intersection of level sets of the
objective functions with the feasible domain is a compact set.

In this paper, let the functions {f;}!; be concave and a function f\ of
{fi}~, be strictly quasi-concave on the convex domain X. The central aim is
to:

(1) construct a retraction r: X — Maz(X, F) .

(2) prove that Max(X,F) and Eff(F(X)) are homeomorphic and have
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the fixed point property.

2. GENERAL DEFINITIONS AND NOTIONS

We will use R™ and R" as the genetic finite-dimensional vector spaces.

In addition, we also introduce the following notations: for every two vectors
r,y € R", x(x1,x9, ..., ) > y(y1, Y2, ..., Yp) means x; > y; for all i € J (weakly
componentwise order), x(xq,Za, ..., ) > y(Y1, Y2, ..., Yn) means x; > y; for all
i € J (strictly componentwise order), and x(z1, X2, ..., Z,) = y(Y1, Y2, -, Yn)
means x; > y; for all ¢ € J and xy > y for some k € Jorx > yand z # y
(componentwise order).

We will use the definitions of concave, quasi-concave and strictly quasi-
concave function in the usual sense:

(a) A function f is concave on X if and only if for any z,y € X and
t €10,1], then f(tz+ (1 —t)y) > tf(x) + (1 —t)f(y).

(b) A function f is quasi-concave on X if and only if for any x,y € X and
t € [0,1], then f(tz + (1 — t)y) > min(f(x), £(y)).

(c) A function f is strictly quasi-concave on X if and only if for any =,y €
X, x#yand t e (0,1), then f(tz+ (1 —t)y) > min(f(z), f(y)) .

Let a function dis : X x X — Ry be a metric (or distance) in X. In a
metric space (X, dis), let 7 be a topology induced by dis. In a topological
space (X, 7), for set Y C X we recall some definitions:

(a) The set Y is called connected if and only if it is not the union of a pair
of nonempty sets of 7, which are disjoint.

(b) The set Y is called path-connected (arc-connected or arcwise-connected)
if and only if for every ,y € Y there exists a continuous function p : [0,1] — Y
such that p(0) = x and p(1) = y. The function p is called path.

(c) The set Y is a retract of X (or X is a retract to Y') if and only if there
exists a continuous function r : X — Y such that r(X) =Y and r(z) = «x for
all x € Y. The function r is called retraction of X to Y.

(d) A continuous function d : X x [0,1] — X is a deformation retraction of
X onto Y if and only if d(z,0) = x, d(z,1) € Y and d(a,t) = a for all x € X,
a €Y and t € [0,1]. The set Y is called a deformation retract of X.

(e) The set Y is contractible if and only if there exist a continuous function
c:Y x[0,1] — Y and a € Y such that ¢(z,0) = a and ¢(x,1) = x for all
xr € Y. In the other words, Y is contractible if there exists a deformation
retract of Y onto a point. The function ¢ is called contraction.
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(f) The set Y is said to have a fixed point property if and only if every
continuous function f : Y — Y from this set into itself has a fixed point, i.e.
there is a point « € Y such that = = f(z).

Of course, the compactness, connectedness and path-connectedness of the
Pareto-optimal set are related to the compactness, connectedness and path-
connectedness of the Pareto-front set, respectively.

From a more formal viewpoint, a retraction is a point-to-point mapping
r : X — Y that fixes every point of Y and r o r(z) = r(x) for all x € X.
Retractions are the topological analog of projection operators in other parts
on mathematics.

It is clear to see that every deformation retraction is a retraction, r(z) =
d(z,1) for all z € X. But in generally the converse does not hold [4].

The fixed point property of sets are preserved under retractions. This
means that the following statement is true: If the set X has the fixed point
property and Y is a retract of X, then the set Y has the fixed point property.

Let X and Y be topological spaces and let A : X — Y be bijective. Then h
is homeomorphism if and only if h and A~! are continuous. If such a homeomor-
phism A exists, then X and Y are called homeomorphic (or X is homeomorphic
to Y). A property of topological spaces which when possessed by a spaces is
also possessed by every spaces homeomorphic to it is called a topological prop-
erty or a topological invariant. The fixed point property of sets are preserved
under homeomorphisms.

3. MAIN RESULT

Now, under our assumptions, the functions {f;}? , are concave and the
function fy of {f;}7, is strictly quasi-concave on the convex domain X, we
will construct the retraction and discuss some topological properties of the
Pareto solutions sets.

To begin with the following definitions:

(a) Define a function f : X — R by f(x) = X', fi(x) for all z € X. It
is clear to check that the function f is concave on X and Argmax(f, X) C
Maz(X, F).

(b) Define also a point-to-set mapping p : X = X by p(z) = {y € X |
F(y) > F(z)}. It can be shown that the set p(x) is a nonempty, convex and
compact set for all x € X and there is x € p(x). Hence, the point-to-set

mapping p is convex-valued and compact-valued on X.
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These definitions allow us to present a main theorem of our paper.

Theorem 1. There exists a retraction v : X — Max(X, F) such that
r(X) = Maz(X, F) and r(x) = Argmax(f, p(x)) for all z € X.

In order to give the prove of Theorem 1, we will construct the retraction
r. The idea is to transfer the multi-objective optimization problem to mono-
objective optimization problem by define a unique objective function.

Now, let fix an arbitrary point x € X and denote t; = f;(z) for i € J.
Consider an optimization problem with single objective function as follows:
maximize f(y) subject to y € p(z).

In result, we get an equivalent optimization problem: maximize f(y) sub-
ject to g;(y) > 0,71 € J and y € X, where the functions g; : X — R satisfying
g:(y) = fily) —t; for i € J. Note that the objective function f and the
constraint functions {g¢;}1 ; are all concave on the convex domain X, see [3].

We will show that these problems have a unique solution z* € Maz(X, F').
Thus, a retraction x* = r(x) will be constructed.

At first, we will prove some lemmas.

Lemma 1. Ifx € X, then | Argmax(f, p(z)) |= 1 and Argmaz(f, p(x)) C
Max(X, F).

Proof. Clearly, there is | Argmax(f,p(z)) |> 1. Let choose y1,y2 €
Argmaz(f,p(x)), y1 # y2, t € (0,1) and z = ty; + (1 — t)y,. It is known that
the set Argmax(f, p(x)) is convex, therefore there is z € Argmax(f, p(z)).
Thus, we obtain f(z) = f(y1) = f(y2)-

For each i € J there is fi(2) > tfi(y1) + (1 — t)fi(y2). By using this
result we derive that f(z) > tf(y1) + (1 —¢)f(y2) = f(y1) = f(y2). Since
f(z) = f(y1) = f(y2) implies f;(2) = tfi(y1) + (1 — 1) fi(y2) for all i € J and
for all t € (0,1). As a result, we get that f;(2) = fi(yo) + t(fi(y1) — fi(y2)) for
all t € (0,1), therefore we find that f;(y1) = fi(y2) for all i € J.

Now, let fix t € (0,1). As described above, the function f is strictly quasi-
concave, therefore we obtain fi(z) > min(fi(y1), fa(y2)) = fa(yr) = faly).
But fi(z) > tfi(y1) + (1 — t)fi(yo) for all i € J and by using this result we
derive that f(z) > tf(y1)+(1—1t)f(y2) = f(y1). This leads to a contradiction,
therefore we obtain | Argmax(f, p(x)) |= 1.

Let choose an arbitrary point y € Argmax(f, p(z)) and assume that y ¢
Mazx(X, F). From the assumption y ¢ Max(X, F') it follows that there exists
z € X satisfying F'(x) = F(y). As a result we derive that z € p(x) and f(z) >
f(y). Again, this leads to a contradiction, therefore we obtain y € Maz(X, F).

The lemma is proved.
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Thus, we introduced the idea of the retraction.

Now, using the results of Lemma 1 we are in position to construct a function
r: X — Max(X, F) such that r(x) = Argmax(f, p(z)) for all x € X

Lemma 2. If x € X, x € Max(X, F) is equivalent to p(xz) = {x}.

Proof. Let x € Max(X,F) and assume that p(z) # {z}. From both
conditions x € p(x) and p(z) # {z} it follows that there exists y € p(x) \ {z}
such that F(y) > F(z). Let choose t € (0,1) and z = tx + (1 — t)y therefore
z € p(x). Since x # y implies fi(z) > fi(x), which contradicts condition
x € Maz(X, F) therefore we obtain p(x) = {z}.

Conversely, let p(x) = {z} and assume that © ¢ Max(X, F). From the
assumption x € Maz(X, F) it follows that there exists y € X satisfying F'(y) =
F(z). Thus we deduce that y € p(z) and = # y, which contradicts condition
p(x) = {z} therefore we obtain v € Max(X, F).

The lemma is proved.

Applying now the previous lemma it follows that if x € Max(X, F'), then
x =r(x) and if x € Max(X, F), then  # x* = r(x). It is easy verify direct
that ror =r.

Lemma 3. r(X) = Max(X, F).

Proof. From Lemmas 1 it follows that 7(X) C Max(X, F). Applying
Lemma 2 we deduce r(Max(X, F)) = Maxz(X, F). This means that r(X) =
Max(X, F).

The lemma is proved.

We will analyze the point-to-set mapping p. Using the Maximum Theorem,
one of the fundamental results of optimization theory, we will show that the
function r is continuous.

Lemma 4. If {x;}32, {uk}i2, € X are pair of sequences such that
limp—ooty = 9 € X and y, € p(xyg) for all k € N, then there exists a
convergent subsequence of {yx}3>, whose limit belongs to p(zo).

Proof. Since the assumption y, € p(xy) for all & € N implies f;(yx) >
fi(zg) for all k € N and all i € J. From the condition {yx}32, C X it
follows that there exists a convergent subsequence {qr}72; C {yx}i>; such
that limp_ooqr = yo € X. Therefore, there exists a convergent subsequence
{pr}2y C {z}2, such that g, € p(px) and limg_oopr = xo. Thus, we find
that f;(qx) > fi(px) for all k € N and for all ¢ € J. Taking the limit as k — oo
we obtain f;(yo) > fi(zo) for all i € J. This implies yo € p(z0).

The lemma is proved.

Continuing with this analysis, we have the following lemma.
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Lemma 5. If {zx}32, C X is a convergent sequence to zo € X and
Yo € p(xg), then there exists a sequence {yi}i>, C X such that y, € p(xy) for
all k € N and limg_.ooYr = Yo-

Proof. Let denote a distance between a point yo and a set p(xy) by di =
inf{dis(yo, ) | v € p(xg)}. Asalready noted, p(xy) is a nonempty, convex and
compact set. Observe that if yo & p(zy), then there exists a unique y* € p(zy,)
such that d, = d(y*, yx).

There are two cases as follows:

First, if yo € p(xk), then d, = 0 and let y = yo.

Second, if yo & p(z), then dy > 0 and let y, = y*.

As a result, we get a sequence {d;}72; C R; and a sequence {y;}p2, C X
such that yx € p(xy) for all k € N and dy, = dis(yo, yx). Since limy_ooxp = To
implies the sequence {dj}72, is convergent and limy_.dr = 0. Finally, we
obtain ltmy_.coYr = Yo-

The lemma is proved.

Lemma 6. The point-to-set mapping p is continuous on X.

Proof. On one hand, from Lemma 4 it follows that the point-to-set map-
ping p is upper semi-continuous on X [9]. On the other hand, from Lemma 5
it follows that the point-to-set mapping p is lower semi-continuous on X [9].
This shows that the point-to-set mapping p is continuous on X.

The lemma is proved.

Lemma 7 [14, Theorem 9.14 - The Maximum Theorem|. Let S C R",
O CR™ g:5x0 — R a continuous function, and D : © = S be a compact-
valued and continuous point-to-set mapping. Then, the function g* : © — R
defined by g*(0) = max{g(x,0) | x € D(0)} is continuous on O, and the point-
to-set mapping D* : © = S defined by D*(0) = {x € D(0) | g(z,0) = g*(0)}
15 compact-valued and upper semi-continuous on ©.

Lemma 8. The function r is continuous on X.

Proof. Let apply Lemma 7 for X = S = ©. Obviously, the function
f is continuous on X. As mentioned before, the point-to-set mapping p is
compact-valued and continuous on X. According to Lemma 1, from the fact
| Argmax(f, p(x)) |= 1, we deduce that r is upper semi-continuous point-to-
point mapping. As it is well-known that every point-to-point mapping, that
is upper semi-continuous, is continuous when viewed as a function. In result,
the function r is continuous on X.

The lemma is proved.

We are now in the position to prove the main result of this section.
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Proof of Theorem 1. From Lemmas 1, 3 and 8 it follows that there exists
a continuous function r : X — Max(X, F) such that r(X) = Maxz(X, F) and
r(x) = Argmax(f, p(x)) for all z € X.

This completed the proof of our theorem.

To recall that a property P is called a topological property if and only if
an arbitrary set X has this property, then Y has this property too, where X
and Y are homeomerphic.

Theorem 2. Maz(x, F') is homeomorphic to Ef f(F(X)).

Proof. As it is well-known every continuous image of the compact set is
compact. In fact, the set X is compact and the function r is continuous on X.
Therefore, the set Maz (X, F) = r(X) is compact.

Since the function F': X — R™ is continuous it follows that the restriction
h: Max(X,F) — F(Max(X, F)) of F'is continuous too. Applying Lemma
2 we deduce that if z,y € Maz(X,F) and = # y, then h(x) # h(y). We
derive that the function h is bijective. Consider the inverse function h~! :
F(Mazx(X,F)) — Max(X, F) of h. As proved before, the set Max(x, F) is
compact, therefore h~! is continuous too. Finally, we obtain that the function
h is homeomorphism.

This completed the proof of our theorem.

The fixed point property is related to the notion of retraction. As showed
before, if X has the fixed point property and Y is a retract of X, then Y also
has fixed point property.

Theorem 3. Max(X, F) and Ef f(F(X)) have the fized point property.

In the proof of this theorem, we will use the following lemmas.

Lemma 10 [14, Theorem 9.31 - Schauder’s Fixed Point Theorem]. Let
f S — S8 be continuous function from nonempty, compact and convex set
S C R" into itself, then [ has a fized point.

Lemma 11. Max (X, F) has a fized point property.

Proof. In fact, the set X is nonempty, compact and convex. Hence, from
Lemma 10 implies that it has the fixed point property. As we have shown in
Theorem 1, the set Max(X, F) is a retract of X. As described earlier, the
fixed point property is preserved under retraction. Then, the set Maz(X, F)
has the fixed point property.

The lemma is proved.

Proof of Theorem 3. As we have proved in Lemma 11, the set Maz (X, F)
has the fixed point property. As mentioned before, the fixed point property is
preserved under homeomorphism. Now, applying Theorem 2 we obtain that
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the set Ef f(F(X)) has the fixed point property too.
This completed the proof of our theorem.

REFERENCES

[1] Benoist J., Connectedness of the Efficient Set for Strictly Quasi-concave
Sets, Journal of Optimization Theory and Applications 96 (1998), 627-654.

[2] Benoist J., Contractibility of the Efficient Set in Strictly Quasi-concave
Vector Mazimization, Journal of Optimization Theory and Applications 110
(2001), 325-336.

[3] Boyd S., L. Vandenberghe, Convex Optimization, Cambridge University
Press, 2004.

[4] Hatcher A., Algebraic Topology, Canbridge University Press, 2002.

[5] Huy N., N. Yen, Contractibility of the Solution Sets in Strictly Quasi-
concave Vector Mazimization on Noncompact Domains, Journal of Optimiza-
tion Theory and Applications 124 (2005), 615-635.

[6] Kinoshita S., On Some Contractible Continua without Fized Point Prop-
erty, Fund. Math. (40) 1953, 96-98.

[7] Luc D., Theory of Vector Optimization, LNEMS vol. 319, Springer-
Verlag, 1989.

[8] Molivert C., N. Boissard, Structure of Efficient Sets for Strictly Quasi-
convex Objectives, Journal of Convex Analysis (1) 1994, 143-150.

[9] Mukherjea A., K. Pothoven, Real and Functional Analysis, Plenum
Press, 1978.

[10] Peleg B., Topological Properties of the Efficient Point Set, Proc. Am.
Math. Soc. (35) 1972, 531-536.

[11] Sawaragi Y., H. Nakayama, T. Tanino, Theory of Multi-objective Op-
timization, Academic Press, 1985.

[12] Slavov Z., C. Evans, On the Structure of the Efficient Set, Mathematics
and Education in Mathematics (33) 2004, 247-250.

[13] Sun E., On the Connectedness of the Efficient Set for Strictly Quasi-
conver Vector Mazimization Problems, Journal of Optimization Theory and
Applications (89) 1996, 475-581.

[14] Sundaran R., A First Course in Optimization Theory, Cambridge Uni-
versity Press, 1996.

413



7.D. Slavov - The fixed point property in convex multi-objective...

[15] Warburton A., Quasi-concave Vector Maximization: Connectedness of
the Sets of Pareto-optimal and Weak Pareto-optimal Alternatives, Journal of
Optimization Theory and Applications (40) 1983, 537,557.

Author:

Zdravko Dimitrov Slavov

Department of Mathematics, Varna Free University,
Golden Sands Resort, Varna 9007, Bulgaria
e-mail:slavovibz@yahoo.com

414



