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Abstract. In the present investigation, we define a class of meromorphic func-
tions by making use of the q−analogue of a linear operator. Coefficient inequalities,
growth and distortion inequalities, as well as closure results are obtained. We also
establish some results concerning the partial sums of meromorphic functions in this
class.
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1. Introduction

Let Φ denote the class of functions of the form:

F(z) =
1

z
+

∞∑
k=1

akz
k, (1)

which are regular in U∗ = {z : 0 < |z| < 1} . Also let Φδ denote the subclass of Φ
consisting of functions of the form:

F(z) =
1

z
+
∞∑
k=1

akz
k, (ak ≥ 0), (2)

which are analytic and univalent in U∗.
For 0 ≤ α < 1, the function F ∈ Φδ is said to be meromorphically starlike of

order α and meromorphically convex of order α, respectively, if and only if

−Re

{
zF ′(z)
F(z)

}
> α, (3)
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−Re

{
1 +

zF ′′(z)
F ′(z)

}
> α (4)

The classes of such functions are denoted by Φ∗δ(α) and Φc
δ(α), respectively.

Note that the class Φ∗δ(α) and various other subclasses of Φ∗δ(0) have been studied
by [9], [12, 13, 14, 15] (see also [3], [7], [17], [19, 20, 21]). Aldweby and Darus [1]
defined the basic hypergeometric function lFs(a1, ..., al; b1, ..., bs, q, z), for complex
parameters ai, bj , q (i = 1, ..., l, j = 1, ..., s, bj ∈ C \ {0,−1,−2, ...} , |q| < 1), by

lFs(a1, ..., al; b1, ..., bs; q; z) =
∞∑
k=0

(a1, q)k...(al, q)k
(q, q)k(b1, q)k...(bs, q)k

zk, (5)

(l ≤ s+ 1, l, s ∈ N0 = N ∪ {0} , z ∈ U∗) where N denotes the set of positive integers
and (a, q)k is the q−shifted factorial defined by

(a, q)k =

{
1, k = 0;

(1− a)(1− aq)(1− aq2)...(1− aqk−1), k ∈ N; a ∈ C . (6)

We note that

lim
q→1−

[
lFs(q

a1 , ..., qal ; qb1 , ..., qbs ; q; (q − 1)1+s−lz)
]

= lFs(a1, ..., al; b1, ..., bs; z), (7)

the well-known generalized hypergeometric function. For more mathematical back-
ground of basic hypergeometric functions, one may refer to [5, 6].

It is known that the calculus without the notion of limits is called q−calculus
which has influenced many scientific fields due to its important applications. Tang
et al. [18] defined the q−derivative ∂q(F(z)) by:

∂qF(z) =
F(z)−F(qz)

(1− q)z

= − 1

qz2
+
∞∑
k=1

[k]qakz
k−1, (8)

where

[j]q =
1− qj

1− q
. (9)

As q → 1−, [j]q = j and ∂qF(z) = F ′(z).
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For positive real values of a1, ..., al and b1, ..., bs (bj ∈ C \ {0,−1,−2, ...} , j =
1, ..., s), let

H(a1, ..., al; b1, ..., bs; q) : Φ→ Φ

be a linear operator defined by

H(a1, ..., al; b1, ..., bs; q, z) = Hl,s,q(a1) = z−1
lFs(a1, ..., al; b1, ..., bs; q; z)

= z−1 +
∞∑
k=1

Γq,kz
k, (10)

where

Γq,k =
(a1, q)k+1...(al, q)k+1

(q, q)k+1(b1, q)k+1...(bs, q)k+1
. (11)

Note that limq→1−Hl,s,q(a1) = Hl,s(a1) was investigated recently by Liu and Srivas-
tava [8] and Aouf [2]. With the aid of the function Hl,s,q, let

Hl,s,q ∗ H∗l,s,q = Gq,λ+1(z), (z ∈ U∗;λ > −1). (12)

where

Gq,λ+1(z) =
1

z
+
∞∑
k=1

[λ+ 1, q]k+1

[k + 1, q]!
zk, (13)

and [k + 1, q]! =

{
1, if k = 0

[1, q][2, q][3, q]...[k, q][k + 1, q], if k ∈ N .

This function yields the following family of linear operators Mλ
l,s,q : Φ → Φ

which are given by:
Mλ

l,s,q(a1)F(z) = H∗l,s,q ∗ F(z). (14)

If F(z) is given by (2), then

Mλ
l,s,qF(z) =Mλ

l,s,q(a1)F(z) = z−1 +
∞∑
k=0

Γq,k(λ)akz
k, (z ∈ U∗, λ > −1). (15)

where

Γq,k(λ) =
(q, q)k+1(b1, q)k+1...(bs, q)k+1[λ+ 1, q]k+1

(a1, q)k+1...(al, q)k+1[k + 1, q]!
. (16)

Note that: limq→1−Mλ
l,s,q(a1)F(z) =Mλ

l,s(a1)F(z) (see [10] at p = 1).

Definition 1. The function F ∈Φδ is said to be in the class Φλ
l,s,q(ζ, α) if it satisfies

Re

{
zq∂q(Mλ

l,s,qF(z))

(ζ − 1)Mλ
l,s,qF(z) + qζz∂q(Mλ

l,s,qF(z))

}
> α, (17)

where λ > −1, 0 ≤ α < 1, 0 ≤ ζ < 1.
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2. Main Results

Unless indicated, let 0 < q < 1, 0 ≤ α < 1, 0 ≤ ζ < 1, λ > −1, z ∈ U∗, F(z) defined
by (2).

Theorem 1. The function F ∈ Φλ
l,s,q(ζ, α) if and only if

∞∑
k=1

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)ak ≤ 1− α. (18)

Proof. Assume that (18) holds true. Since

Re {ω} > α if and only if |ω − 1| < |ω + 1− 2α| ,

it is sufficient to show that∣∣∣∣∣∣
zq∂q(Mλ

l,s,qF(z))−
[
(ζ − 1)Mλ

l,s,qF(z) + qζz∂q(Mλ
l,s,qF(z))

]
zq∂q(Mλ

l,s,qF(z)) + (1− 2α)
[
(ζ − 1)Mλ

l,s,qF(z) + qζz∂q(Mλ
l,s,qF(z))

]
∣∣∣∣∣∣ < 1.

Using (18), we have for 0 < |z| = r < 1,∣∣∣∣ ∑∞
k=1(1− ζ)(q[k]q + 1)Γq,k(λ)akz

k+1

−2(1− α) +
∑∞

k=1 {q[k]q [1 + (1− 2α)ζ] + (1− 2α)(ζ − 1)}Γq,k(λ)akzk+1

∣∣∣∣
≤

∑∞
k=1(1− ζ)(q[k]q + 1)Γq,k(λ)akr

k+1

2(1− α)−
∑∞

k=1 {q[k]q [1 + (1− 2α)ζ] + (1− 2α)(ζ − 1)}Γq,k(λ)akrk+1

≤ 1. (19)

Since (19) holds for all r, 0 < r < 1 letting r → 1−, we have F ∈ Φλ
l,s,q(ζ, α).

Now, let F ∈ Φλ
l,s,q(ζ, α), since Re(z) ≤ |z| for all z. Then

Re

{
zq∂q(Mλ

l,s,qF(z))

(ζ − 1)Mλ
l,s,qF(z) + qζz∂q(Mλ

l,s,qF(z))

}

= Re

{
−1 +

∑∞
k=1 q[k]qΓq,k(λ)akz

k+1

−1 +
∑∞

k=1 [ζ(1 + q[k]q)− 1] Γq,k(λ)akzk+1

}
> α.

Choose values of z on real axis so that
zq∂q(Mλ

l,s,qF(z))

(ζ−1)Mλ
l,s,qF(z)+qζz∂q(Mλ

l,s,qF(z))
is real. Letting

z → 1 through positive values, we have (18).
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Corollary 2. If F ∈ Φλ
l,s,q(ζ, α), then we have

ak ≤
1− α

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)
. (20)

The result is sharp for the function Fk(z) defined by

Fk(z) =
1

z
+

1− α
[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)

zk, (21)

for k ≥ 1.

Theorem 3. If F ∈ Φλ
l,s,q(ζ, α), then

∞∑
k=1

ak ≤
1− α

[q(1− αζ) + α(1− ζ)] Γq,1(λ)
. (22)

Proof. Let F ∈ Φλ
l,s,q(ζ, α). Then, in view of (18), we have

[q(1− αζ) + α(1− ζ)] Γq,1(λ)
∞∑
k=1

ak ≤ (1− α),

we have the assertion (22).

Theorem 4. Let the function F(z) ∈ Φλ
l,s,q(ζ, α). Then

1

|z|
− 1− α

[q(1− αζ) + α(1− ζ)] Γq,1(λ)
|z| ≤ |F(z)| ≤ 1

|z|
+

1− α
[q(1− αζ) + α(1− ζ)] Γq,1(λ)

|z| .

(23)
The result is sharp.

Proof. For F(z) ∈ Φλ
l,s,q(ζ, α). Then

|F(z)| =

∣∣∣∣∣1z +

∞∑
k=1

akz
k

∣∣∣∣∣ ≤ 1

|z|
+ |z|

∞∑
k=1

ak,

and

|F(z)| =

∣∣∣∣∣1z +
∞∑
k=1

akz
k

∣∣∣∣∣ ≥ 1

|z|
− |z|

∞∑
k=1

ak,

which in view of (22), we have (23).
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Theorem 5. Let F(z) ∈ Φλ
l,s,q(ζ, α). Then F(z) is starlike in 0 < |z| < r1, where

r1 is the largest value for which

([k]q + 2)(1− α)

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)
rk+1

1 ≤ 1, (24)

for k ≥ 1. The result is sharp for the function Fk(z) given by (21).

Proof. It is sufficent to show that∣∣∣∣∣zF
′
(z)

F(z)
+ 1

∣∣∣∣∣ < 1, (25)

we have ∣∣∣∣∣zF
′
(z)

F(z)
+ 1

∣∣∣∣∣ ≤
∑∞

k=1([k]q + 1)ak |z|k
1
|z| −

∑∞
k=1 ak |z|

k
. (26)

Hence for 0 < |z| < r, (26) hold true if

∞∑
k=1

([k]q + 2)akr
k+1 < 1,

and by (18), we may take

∞∑
k=1

ak ≤
1− α

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)
λk, (k ≥ 1),

where λk ≥ 0 and
∑∞

k=1 λk ≤ 1.
For each fixed r, we choose the positive integer k0 = k0(r) for which

([k0]q + 2)

[q[k0]q(1− αζ) + α(1− ζ)] Γq,k0(λ)
rk0+1, is maximal.

Then it follows that

∞∑
k=1

([k]q + 2)akr
k+1 ≤ ([k]q + 2)(1− α)

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)
rk+1,

then F is starlike in 0 < |z| < r1 provided that

([k0]q + 2)(1− α)

[q[k0]q(1− αζ) + α(1− ζ)] Γq,k0(λ)
rk0+1

1 ≤ 1.
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We find the value r1 = r0 and the corresponding integer k0(r0) so that

([k0]q + 2)(1− α)

[q[k0]q(1− αζ) + α(1− ζ)] Γq,k0(λ)
rk0+1

0 = 1. (27)

Then this value is the radius of starlikeness for function F belong to class Φλ
l,s,q(ζ, α).

Theorem 6. Let F(z) ∈ Φλ
l,s,q(ζ, α). Then F(z) is convex in 0 < |z| < r2, where r2

is the largest value for which

[k]q([k − 1]q + 3)(1− α)

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)
rk+1

2 ≤ 1, (28)

for k ≥ 1. The result is sharp for the function F(z) given by (21).

Proof. By using the same technique in the proof of Theorem 4 we can show that∣∣∣∣∣zF
′′
(z)

F ′(z)
+ 2

∣∣∣∣∣ < 1, (29)

for 0 < |z| < r2 with the aid of Theorem 1. Thus, we have the assertion of Theorem
6.

Let the function Fj(z) be given by

Fj(z) =
1

z
+
∞∑
k=1

ak,jz
k, j = 1, 2, ...,m. (30)

Theorem 7. Let the function Fj(z) defined by (30) be in the class Φλ
l,s,q(ζ, α), for

each j = 1, 2, ...,m, then the function F(z) defined by

F(z) =
1

z
+
∞∑
k=1

bkz
k, (31)

also be in the class Φλ
l,s,q(ζ, α), where

bk =
1

m

m∑
j=1

ak,j . (32)

7
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Proof. Since Fj(z) ∈ Φλ
l,s,q(ζ, α), it follows from Theorem 1, that

∞∑
k=1

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)ak,j ≤ 1− α, j = 1, 2, ...,m. (33)

Hence

∞∑
k=1

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)bk

=

∞∑
k=1

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)(
1

m

m∑
j=1

ak,j)

=
1

m

m∑
j=1

( ∞∑
k=1

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)ak,j

)
≤ 1− α.

By Theorem 1, we have F(z) ∈ Φλ
l,s,q(ζ, α).

Theorem 8. The class Φλ
l,s,q(ζ, α) is closed under convex linear compination.

Proof. Let Fj(z) be defined by (30). Define the function h(z) by

h(z) =
1

z
+

∞∑
k=1

bkz
k, bk ≥ 1. (34)

Suppose that F(z) and h(z) are in the class Φλ
l,s,q(ζ, α), we only need to prove that

G(z) = ξF(z) + (1− ξ)h(z) (0 ≤ ξ ≤ 1), (35)

also be in the class. Since

G(z) =
1

z
+

∞∑
k=1

{ξak + (1− ξ)bk} zk, (36)

then

∞∑
k=1

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ) {ξak + (1− ξ)bk} ≤ (1− α), (37)

with the aid of Theorem 1. Hence G(z) ∈ Φλ
l,s,q(ζ, α). This clearly completes the

proof of the Theorem.

8



A. O. Mostafa, Z. M. Saleh – A Class of Meromorphic Functions . . .

Theorem 9. Let F0(z) = 1
z and Fk(z) defined by (21) for k ≥ 1. Then the function

F(z) ∈ Φλ
l,s,q(ζ, α) if and only if it can be expressed in the form

F(z) =
∞∑
k=0

ηkFk(z), (38)

where ηk ≥ 0 and
∞∑
k=0

ηk≤1. (39)

Proof. We suppose that the function F(z) can be expressed in the form (38). Then
from (21) and (39) we have

F(z) =
1

z
+

∞∑
k=1

(1− α)ηk
[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)

zk, (40)

Since

∞∑
k=1

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ).
(1− α)ηk

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)

= (1− α)
∞∑
k=1

ηk

≤ (1− α). (41)

It follows from Theorem 2 that the function F(z) ∈ Φλ
l,s,q(ζ, α).

Conversely, let F(z) ∈ Φλ
l,s,q(ζ, α) which satisfies (22) for k ≥ 1, we obtain

ηk =
(1− α)

[q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ)
ak ≤ 1,

and

η0 = 1−
∞∑
k=1

ηk.

This completes the proof of the Theorem 9.

Corollary 10. The extreme points of the class Φλ
l,s,q(ζ, α) are the functions Fk(z)

(k ≥ 1) given by (21) in Theorem 9.

9
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For F(z) ∈ Φδ, given by 2, the sequence of partial sums is given by

Fn(z) =
1

z
+

n∑
k=1

akz
k (n ∈ N). (42)

Now we will follow the work of [16], [11] and [4] on partial sums of meromorphic
univalent functions, to obtain the results. Let

Ψλ
q,k(α, ζ) = [q[k]q(1− αζ) + α(1− ζ)] Γq,k(λ). (43)

Theorem 11. If F(z) ∈ Φδ, satisfies the condition (18), then

Re

(
F(z)

Fn(z)

)
≥

Ψλ
q,n+1 − 1 + α

Ψλ
q,n+1

, (44)

where

Ψλ
q,k(α, ζ) ≥

{
1− α, if k = 1, 2, 3, ..., n
Ψλ
q,n+1, if k = n+ 1, n+ 2, ...

. (45)

The result (44) is sharp for

F(z) =
1

z
+

1− α
Ψλ
q,n+1

zn+1. (46)

Proof. Let

1 + ω(z)

1− ω(z)
=

Ψλ
q,n+1

1− α

[
F(z)

Fn(z)
−

Ψλ
q,n+1 − 1 + α

Ψλ
q,n+1

]

=

1 +
∑n

k=1 akz
k+1 +

(
Ψλq,n+1

1−α

)∑∞
k=n+1 akz

k+1

1 +
∑n

k=1 akz
k+1

. (47)

It suffices to show that |ω(z)| ≤ 1. Now from (47) we have

ω(z) =

(
Ψλq,n+1

1−α

)∑∞
k=n+1 akz

k+1

2 + 2
∑n

k=1 akz
k+1 +

(
Ψλq,n+1

1−α

)∑∞
k=n+1 akz

k+1

.

Hence we obtain

|ω(z)| ≤

(
Ψλq,n+1

1−α

)∑∞
k=n+1 ak

2− 2
∑n

k=1 ak −
(

Ψλq,n+1

1−α

)∑∞
k=n+1 ak

.

10
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Now |ω(z)| ≤ 1 if and only if

2

(
Ψλ
q,n+1

1− α

) ∞∑
k=n+1

ak ≤ 2− 2

n∑
k=1

ak,

or, equivalently
n∑
k=1

ak +
∞∑

k=n+1

(
Ψλ
q,n+1

1− α

)
ak ≤ 1.

From (18), it is sufficient to show that

n∑
k=1

ak +

∞∑
k=n+1

(
Ψλ
q,n+1

1− α

)
ak ≤

∞∑
k=1

(
Ψλ
q,k

1− α

)
ak,

which is equivalent to

n∑
k=1

(
Ψλ
q,k − 1 + α

1− α

)
ak +

∞∑
k=n+1

(
Ψλ
q,k −Ψλ

q,n+1

1− α

)
ak ≥ 0. (48)

For z = reiπ/n we have

F(z)

Fn(z)
= 1 +

1− α
Ψλ
q,n+1

zk → 1− 1− α
Ψλ
q,n+1

zk =
Ψλ
q,n+1 − 1 + α

Ψλ
q,n+1

where r → 1−,

which shows that F(z) given by (46) gives the sharpness.

Theorem 12. If F(z) ∈ Φδ, satisfies the condition (18), then

Re

(
Fn(z)

F(z)

)
≥

Ψλ
q,n+1

Ψλ
q,n+1 + 1− α

, (49)

where Ψλ
q,n+1 is defined by (43) and satisfies (45) and F(z) given by (46) gives the

sharpness.

Proof. The proof follows by defining

1 + ω(z)

1− ω(z)
=

Ψλ
q,n+1 + 1− α

1− α

[
Fn(z)

F(z)
−

Ψλ
q,n+1

Ψλ
q,n+1 + 1− α

]
. (50)

The reminder part is as in Theorem 11. So, we omit it.
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for certain classes of meromorphic functions using q−derivative operator, J. Math.
Resear. Appl., 38 (2018), no. 3, 236-246.

[19] B. A. Uralgaddi and M. D. Ganigi, A certain class of meromorphically starlike
functions with positive coefficients, Pure Appl. Math. Sci., 26 (1987), 75-81.

[20] B. A. Uralegaddi and C. Somanatha, Certain differential operators for mero-
morphic functions, Houston J. Math., 17 (1991), 279-284.

[21] B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike
univalent functions, Bull. Austral. Math. Soc., 43 (1991), 137-140.

A. O. Mostafa
Department of Mathematics, Faculty of Science,
Mansoura University, Egypt
email: adelaeg254@yahoo.com

Z. M. Saleh
Department of Mathematics, Faculty of Science,
Mansoura University, Egypt
email: einabnsar2@gmail.com

13


	Introduction
	Main Results

