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ABSTRACT. Under eigenvalue criteria we prove existence of nodal solutions to
the nonlinear boundary value problem

—u” + qu = puf(t,u) in (0,1)
w(0) = limy—,3 u(t) = 0,

where p is a positive real parameter, ¢ € C' ([0,1),R), fol q = o0 and f : [0,1] x
(R~ {0}) — R is continuous. The cases where the nonlinearity wf(¢,u) is asymp-
totically linear, sublinear and superlinear are considered.
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1. INTRODUCTION

Sturm-Liouville boundary value problems (bvp for short) have been the subject of
hundreds of articles during the previous five decades, where existence and multiplic-
ity of solutions have been investigated. Many of these articles concern existence of
nodal solutions for second order differential equations subject to various boundary
conditions; see, for example, [1], [4], [5], [7], [9], [10], [11] [12], [13], [14], [15], [16],
[17], [19], [20], [21], [22] [23], [24], [25], [26], [27] and references therein.

Nodal solutions appear as eigenfunctions to the half eigenvalue problem

(1)

—u" 4+ qu = omu+ au™ — Bu~ in (0,1),
u(0) = limysy u(t) = 0,

where o is a real parameter, ¢, m, o, € C([0,1],R) and m > 0 in [0, 1].
To the authors’ knowledge, such a bvp has been studied for the first time in [4],
where H. Berestycki introduced the concept of half-eigenvalue. He proved that the
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bvp (1) admits two increasing sequences of half-eigenvalues (a:)k>1 and (O'k_)k>1
such that ¥y ,, the eigenfunction associated with o}, admits exact_ly (k—1) Z€ros
in (0,1), all are simple and w%,y(()) > 0. The conditions ¢,m,«, 5 € C ([0,1],R)
and m > 0 in [0,1] have been relaxed in [2] to ¢,m,a, 3 € L' ([0,1],R), m > 0
a.e. in (0,1) m > 0 a.e. in a subinterval (§,n) of [0,1]. Notice that the concept of
half-eigenvalue generalizes that of eigenvalue and for the role played by this notion,
we refer the reader to [4], [6], [10], [24], [25], and [26].

In this article, we consider the case of the bvp (1) where m,«, 5 € C (0,1],R),
m > 01in (0,1), m(to) > 0 for some ¢y € [0,1], and ¢ € C ([0,1) ,R) with [ q(t)dt =
+00. Notice that the results obtained in [4] and in [2] do not cover such a situation.
However, we prove in Section 3 that the Berysticki’s result holds true for such a
version of the bvp (1).

In Section 4, we investigate existence and multiplicity of nodal solutions to the
bvp
—u” 4+ qu = g(t,u) in (0,1), @)

w(0) = limy—,3 u(t) =0,

where ¢ € C'([0,1),R) with fol q(t)dt = +o0 and g : [0,1]xR — R is continuous. The
nonlinearity ¢ is supposed to be sublinear, assymptotically linear and superlinear.
This interest is mainly motivated by that in [19], [17] , [16] and [15] where is considerd
the version of the bvp (1) with ¢ = 0 and the nonlinearity g is separable variable;
Namely
{ —u"(t) =a(t)g(u(t), te (0,1), (3)
u(0) = u(1) =0,

where a : [0,1] — [0, +00) is continuous and does not vanish identically and f: R —
R is continuous.

Let go = lims—09(5)/5, goo = limg 00 g(s)/s and (ug)y>; be the sequence of
eigenvalues of the bvp

{ —u" (t) =pa(t)u(t), te (0,1),
u(0) = u(l) =0.

Authors of the paper [19] under the assumptions that

(A) a>0in [0,1],

(B) a is continuously differentiable,

(C) g(—s) = —g(s) for all s € R,

(D) g(s)s >0 for all s # 0,

(E) g is locally Lipschitzian,

(F) in the case where gp = oo, g is nondecreasing and ¢(s)/s is nonincreasing
on (0, sp] for some so > 0,
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proved by means of a shooting method, that if for some integer k, A < g(s)/s < Ag41
for all s # 0, then except the trivial function, the bvp (3) has no solution and if
90 < Mk < oo OF Joo < Ak < go, then the bvp (3) has a solution having exactly k — 1
zeros in (0, 1), all are simple.

In [16], R. Ma and B. Thompson improved the existence result in [19]. Just
under Hypotheses (A) and (D), they proved that if 0 < go < A < goo < 00 OF
0 < goo < Ak < go < 00, then the bvp (3) has two solutions u4 and u_, each having
exactly k — 1 zeros in (0, 1), all are simple and for v = + or —, vu, (0) > 0. In [17],
where Hypothesis (A) is relaxed to:

(A’) a > 0 in [0,1] and does not vanish identically on any subinterval of [0, 1],
they obtained the same result.

As it is mentioned in [16], we conclude from the above result that if Hypotheses
(A’) and (D) hold and if there are integers k,i such that 0 < gp < A\ < Agyi <
Joo <00 0r 0 < goo < Ak < Apgi < go < 00, then for each j € {0,1,..,7} the bvp (3)
has two solutions u4 ; and u_, j, each having exactly k£ + j — 1 zeros in (0,1), all
are simple and for v = + or —, vuy, ; (0) > 0.

In [15], the authors considered the cases where the nonlinearity f is superlinear
and sublinear. They proved that if Hypotheses (A), (D) hold and gy = 0, goo = 00
or Hypotheses (A), (D), (F) hold and go, = 0, then for each j € N = {1,...} the
bvp (3) has two solutions u;  and u; _, each having exactly j — 1 zeros in (0,1), all
are simple and for v = + or —, vuj, (0) > 0.

Main results of Section 4 concern nodal solutions to the bvp (2) in the cases where
the nonlinearity g is respectively asymptotically linear, superlinear and sublinear.
All are obtained by means of the global bifurcation theory due to P. H. Rabinowitz
and they provide existence and multiplicity of nodal solutions with less conditions
relative to that obtained in the above cited papers.
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2. PRELIMINARIES

2.1. General setting

For statements of main results in this paper needed to introduce some notations: in
what follows, we let

E=C(0,1,R), Et={meFE:m>0in [0,1]},

' ={m € E* :m >0 in a subinterval of [0,1]},

I+ = {mel*t:m>0in [0,1]},

Q={aeC(0,1).R): J; a(s)ds = +o0},

RQT={¢eQ: q()>0for all t € (0,1) and liminf, ; ¢(¢) > 0},
Q#_{qu fo (1—s)q )ds<oo}

W = {u e C([0,1), B) : u(0) = limy 1 u(t) = 0}

C3 (10,1),R) = {w e €1 (10,1),R) : supyepoy |u' ()] < o0}
wl=wncl(o,1),R), W2=w!'NnCc?(0,1),R).

The linear spaces W and W are respectively equipped with the norms ||-|| and [|-||,
defined by [|ull = sup;cfo ) [u(t)] and [jull; = sup;efo ) [/(£)[. Obviously, (W, |-||)
and (W1,]|-||,) are Banach spaces.

For an integer k > 1, S+ denotes the set of all the functions « in W' having
exactly (k—1) zeros in (0, 1), all are simple and u is posmve in a right neighbourhood
of 0, S, = S+ and S+ S+US For u € Sy, (z]) :0 with0=2p< 21 <...<
2z =1and u (z]) =0 for j=1,...,k—1,is said to be the sequence of zeros of u.

Throughout this paper, for ¢ € @ the operator £, : C?([0,1),R) — C ([0,1),R)
is defined by Lou = —u” + qu.

For v = + or —, let I¥ : W — W be the operator defined for v € W by
I"u(z) = max(vu(z),0) = u”(x). We have for all u € W

w=Itu—IT"u and |u|=TTu+1I u.
This implies that, for all u,v € W,

|I+u—I+U| < (|“;" 4 HU|5|U||) < ]u—v\,
\I_u _ I_U‘ < (|U5U| + HU\?UH) < |u _ U|,

and the operators I, I~ are continuous.
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2.2. The Green’s function and fixed point formulation

In all what follows, we let for ¢ € Q, ¥, be the unique solution of the initial value

problem
Lqu =0,
u(0) =0, v/(0) = 1.

Lemma 1. For all ¢ € Q", the function ¥, has the following properties:
i) W,(t) >0, W (t) >0 and ¥} (t) >0 for all t € (0,1].

ii) limgyq Wy (t) = +oo.

iii) The function W,/W; is bounded at t = 1.

iv) limgo U, (t) f) ngs) = 1.

v) lime Wy (t) [, i = 0.

vi) If g € Q4 then ¥y(1) = limy_ ¥4(t) < oo.
Proof. Let ¢ € Q% and let a € (0,1) be such that a = infc(, 1) ¢ (s) > 0.

i) We have to prove that W (¢) > 0 for all ¢ € [0,1). Suppose on the contrary
that We(tp) = 0 for some #o € (0,1). In this case and since W;(0) = 1, there is
t« € (0,t0] such that W} (t.) = 0 and W, (t), ¥y (t) > 0 for all ¢ € [0,%.). Therefore,
we have from W = ¢q¥, that W; is nondecreasing on [0,%.) and this leads to the

contradiction
1 =W, (0) < W, (t.) = 0.

ii) We have for all t € (a,1)

() = <\IJ;(a)+/at\If’q’(s)ds)

> (v + (Lt 0 ©) [aas)

leading to lim;_,q \I'f](t) = +00.
iii) We have for all ¢ > a

t t
(W) — (W(a)? = 2 / U (s) W (s)ds = 2 / OL ACL ACLE
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leading to

(Wq(1)/ W (1))

1
2 < o + (qf;(a)/\ll;(t))Q for all t > a.

Hence, we deduce from Assertion ii), existence of a, € (a,1) such that

2
Wy(t)/ W, (t) < \/; for all t > a,.

iv) By means of L'Hopital’s rule we obtain

lim W,
t—0

0 /tl ds

ftl \IJ(;st B
V2(s) 00 (W(t)

v) Again by means of L’Hopital’s rule we obtain

lim W, (t

t—1

1

)/1 ds = lim
¢ W2(s) o1 (1)

=0.

vi) First, notice that if ¢ € Q4 then for all ¢ € (a, 1)

/at/:q(T)des <

Then, for all s € (a,1)

Wy (s)

leading to

N

IN

Integrating on (a,t), we obtain

i

Wy(t)

Vy(a)

)<

/Ot/OSq(T)des

—(1—t)/0 q(s)ds—l—/o(l—s)q(s)ds
2/0 (1—15)q(s)ds.
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leading to

U, (f) < Uy(a) exp @323 + 2/01(1 —5)q(s) ds> .

As U, is increasing, we have W, (1) = lim;_,1 ¥4(t) < +o0.
The proof of Lemma 1 is complete.

Because of Properties ii), iii), iv) and v) in Lemma 1, the function

1 it t=0
o= d v - re(0

q(t)_ q()j;f \1’3(8) 1 6( ) )7 (5)
0 it ot=1

is well defined and it is the unique solution of the bvp

Lou=0in (0,1)
u(0) =1, limy_; u(t) = 0.

Lemma 2. For all g € QF, the function ®, has the following properties:
a) ®,(t) >0, ¢ (t) <0 and ®(t) >0 for all t € (0,1),

b) For allt € [0,1], ®4(t)V;(t) — Yy (t)Pq(t) = 1,

c) The function ®,/®; is bounded at 1.

Proof. Let ¢ € Q1 and a € (0,1) be such that a = inf;>4 q(t) > 0.

a) We have respectively from (5) and @} = q®,, that ®,(t) > 0 and &y (t) > 0
for all ¢ € (0,1). Since the function Wy is increasing, we obtain from (5) that for all
te(0,1),

Lds 1 Lo, 1 1
@’t:\lllt/—< —Tqs — < —= <0
o) olf) e Vg (1) 7 U,y (t) limy 1 Wy (t)

b) We have from (5) that for all ¢ € [0, 1]
Lds Lds 1
(I)t\I/’t—\I/t(b’t:\Ilt\I/’t/—\Ift\I/’t/— =1
W80 = 1)) = v 0w [ G = v (%0 [ G- 57

c) We have for t > a :

1 1
(—o, (1) = 2/t ®/(s) (-@’q(s))ds:/t q(5)Bq(s) (—P(s)) ds

Vv
o
&

=}

=

o
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This leads to

1By ()0, (8)]* = (By(t)/ — @ (1))° < ~ for all £ > T,

Q

and so,
SUP“I’ )/ @ (t)] < T
The proof of Lemma 2 is complete.
Set forge QT and 0<fH<n<1
Vao(t) = q(0)Vy(t) =Ty (0) P (t)

q’qﬁ,n (t) =

Vg0 (n ,
D, (t
(I)q,e(t) = hmq)qen()_q):((‘g))a
Olfmm( s) <46
. a,0 () g0 (t) if0<t<s<ng
Ga(0om t,8) = c1> ()\I/ (s)if0<s<t<n
Olfmln (t,s) >n,
Olf mlnts <@
Gq(0,t,s) = hmG 0,m,t,s) = (t) ifo<t<s
(s) ifO0<s<t
oop(t) = 2B g 1y Za, (0), ) — W, (0) D, (t) and
q,0 = o, (0)’ .0 \t) = %Fq q q q
0 if min(¢,s) <0
Gq(0,t,5) = Duo(s)Wep(t) ifO<t<s

Quo(t)Wep(s) if 0 <s<t.

We have then for all ¢ € @ and all 6,7 € [0, 1]

/ / _ / ’ o
(1)419777 q,0 — %9777\11%9 = (I)qyg‘llqﬁ — ‘I)q,e‘l’q,e =1 ou?
and
P (0)

Gq(0,t,5) = Gy(t, s) — B, (0)

D, (s)Py(t) for t,s > 0.

where
()P, (s) if0<t<s<1

Py
O, (s) Uy (t) f0<s<t<I.

Gy(t,s) = G4(0,t,s) = {
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Lemma 3. We have for all g € Qt and 0,1 € [0,1) with 6 < n:
1. G¢(0,m,t,s) < Gy(0,n,s,s) forallt,s € [0,n],
2. Gg(0,t,5) < Gy(0,s,s) forallt,s € [0,1],
3. Gg(0,m,t,8) > poy (t) Gg(0,m,5,s) for allt,s € [0,n] where

Py (t) = min(t —0,n—t) /W9 (n). Moreover, if ¢ € Qu then ¥, (1)
limy 1 W (1) < o0 and Gq4(0,n,t,8) = pp, (t) Gq(0,n,s,5) for all t,s € [0,

where pp, (t) =min (¢t —0,n—1t) /Vg0(1).

)

Proof. Assertions 1 and 2 are obtained from the monotonicity of the functions

D40, Py and ¥ 9. We have

GylOmts) _ | wegiesi<s<y
GQ(97n7373)

v

[}

U, 0(t)

it <tss <y
DQyon,(t) if0<s<t<n.

Since

¢ ¢
Vg (t) = / ;’9 (s)ds > / ;79 (0)ds=1t—10
0 %

and

Dy () = /t77 (=240, (s) ds > /t" (=®g0,y () ds = W0 (n)

we obtain from (8),

t—60
wa>{w<m1”§t§8§" > poy (1),

7
Gq(0,n,s,s) %if@gsgtgn.

This ends the proof.
Lemma 4. We have for all g € QT

i) Gy = sup; 1e(0.1] Gq(t, 8) = supg<i<q Py (1) Uy (t) < 00,

i1) éq = SUPg ¢,se(0,1] Gy(0,t,s) < oo.
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Proof. Let ¢ € Q1 and T € (0,1) be such that a = inf;>7 ¢(t) > 0.
i) Taking into consideration that ¥, is increasing, we obtain from (5), that for
all t,s € [0,1]

i zogom = () (momo [ 555)

vy ()
< (i) (w0 | 5) = (i)

This together with iii) in Lemma 1 leads to

Gy= sup Gyl(t,s) < sup @,(t)¥y(t) < 0.
t,s€[0,1] tel0,1]

ii) Because of ®, is decreasing and ¥, is increasing we have for all s,t > 6

o
IN

Gyl6.1.3) < D (00W,(0) + LA P(0)8,(5)

Dy (t)Wy(t) + Wy (0)Py(0)

2 sup Pq(t)V,(t) < oo.
t€[0,1]

<
<

The proof of Lemma 4 is complete.

Lemma 5. For all ¢ € Q, 6 € [0,1) and h € W, Ly gh(t) fo q(0,t,5)h(s)ds is
the unique solution in (0,1) to the bup:

Loyu=h(t), <t<1,
u(f) = limy—y; u(t) =0

and the operator Ly g : W — Wt is continuous. Moreover, if F:[0,1] xR =R is a
continuous function such that F(0,0) = F(1,0) = 0, then the operatorTy,o: W — W
defined for v e W by

Tyou(t / Gq(0,t,5)F(s,v(s))ds

is completely continuous and w € W is a fized point of T, ¢ if and only if u is a
solution to the bup

{Eqv_ t,o(t)), 0<t<l,
(0) = (1) = 0.

118



A. Benmezai, S. Mellal and J. Henderson — Sturm-Liouville bvps ...

Proof. Let h € W and set H (t) = Lqgh(t). We have

_ / ' (6.6, )h(s)ds =
0

and differentiating twice in the relation

1

/ G(0,t,5)h(s)ds = @y g (t) /gt Woo(s)h(s)ds+ T, (t)/t D, 0 (s) h(s)ds
we obtain
H"(t) = q(t)H(t) + (D) (t) Wg (t) — Pyo () ¥ 4 (t)) h(t) for all t > 6.
This together with (6) lead to
L H(t) = h(t) for all t > .
We have for all ¢t > 6 :

t 1 1
() = 24(0) [ B h(s)ds+%,(0) [ B, ()h(s)as ;‘j% B,(0) [ ®y(s)h(s)as.

Let us prove that limt_>1 H(t)=0. Clearly, if f; U, (s)h(s)ds < oo then

limg 1 @y f0 s)ds = 0 and if fe (s)h(s)ds = oo then taking in consider-
ation Assertlons d) in Lemma 2, 1) of Lemma 4 and lim;_,; h(t) = 0, we obtain by
means of the L’Hopital’s rule

t
— i e We(®h(s)ds
Iy [ walenis =y E

= 1im (S0 ) (@40 Wy() (1) = 0.

t—1

Similarly, if lim;—; ¥4(t) < oo then limy 1 W ft s)ds = 0 and if
lim; 1 W4(t) = +oo then taking in consideration iii) in Lemma 1 i) of Lemma
4 and limy_,; h(t) = 0, we obtain by means of the L'Hopital’s rule

1 1
T ft D, (s)h(s)ds
lim W, (¢ )/t P,y(s)h(s)ds = lim PO RS

t—1

I
£
—~

~~
N—

= lim(

1 \I/il(t)ﬂbq(t)qjq(t)h(t) =0.

Now, for any h € W, we have

[ Lq.0hll = e |[Lgoh(t)| = sup
t€0,1 t€[0,1]

/G&ts s)ds| < G, ||
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and taking in consideration (6) we obtain

|(Lgoh)'|| = sup [(Lgoh) (t)]
te(0,1)
t 1
= sup B, (1) / U, (5) h(s)ds + T, o (1) / By () h(s)ds
te(0,1) 0 t

sup (=200 [ W0 5 (s) s + 0 1) |

t€(0,1)

sup (‘P;,e () Wy (1) /9 s + W () Rgp () /t 1 dS) 7]

te(0,1)
[l

1

IN

By (9)1(5)| s )

IN

IN

The above estimates prove that the operator L, g is well defined and is continuous.
Now, We proof that Ty ¢ is completely continuous. Notice that T, 9 = Jo L, goF
where F : W — W is defined by Fu(t) = F(t,u(t)) and 3 is the compact embeding
of W' in W. Because that the mapping F is continuous and bounded, the operator
T4 6 is completely continuous.
At the end, if u is a fixed point of T}, 9 and h = Fu, then u = L, gh and

{ Lou(t) =h(t) = F(t,v()), 0§ <t<1,
u(0) = limy—1 u(t) = 0.

In the remainder of this paper, for ¢ € Q1 and m € E, we let Ly, L;m,L;m :
W — W be the operators defined by

Lomu(t) = [y Gg(t, s)m(s)u(s)ds,
Lymu(t) = (Lgm o I'T) u(t) = Lomu™ (),
Ly mu(t) = (Lgm o I7) u(t) = Lemu(t).

q?m

It follows from Lemma 5 that L, is compact and for v = + or —, Ly ,,, is completely
continuous.
2.3. Comparison results

The following three lemmas will play important roles in in this article.

Lemma 6 ([2]). Let j and k be two integers such that j > k > 2 and let (fl)ig,
(m)ﬁzé be two families of real numbers such that

So=6< << <& <& =1,
n=&<m<ne<--<ni-1<n=n.
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If & < m1, then there exist two integers m and n having the same parity, 1 < m <
k—1and1<n<j—1 such that

ém <N < Mpp1 < £m+1-

. N\ J=ki
Lemma 7. Fori=1,2 let ¢; € S’f.f“” N Wy having a sequence of zeros (z;) o If
J:
for some integers m,n with m < ki1 — 1 we have n < ko — 1 z,%n < z,% < z,%H < z}nH
and ¢1¢2 > 0, then

>0 if 2, <22 or 22,1 < 2},
— 0 ifl =2 2
=0if 2z, =2, < 2501 = 21

/ T brLgbr — daLytn {

Proof. Let Wr = ¢1¢— pad; be the Wronksian of ¢; and ¢2 and without loss of gen-
erality, suppose that ¢1, ¢2 > 0in (22, 22, ;) . We have then Wr(0) = limg_,; Wr(t) =
0 and

2
Zn+1
/ D1Lgp2 — p2Lygpr = Wr (ZTQL) — hr%l Wr(t).
22 =z, 1

Therefore, we distinguish the following cases:
a1 2 2 _ 1. :
i) 2, <z, <z, = %, In this case we have
61 () = 02 (2) = 61 (2041) = 61 (z:40) =0,

leading to

2
Znt1
/ D1Lgp2 — P2 Lypr = Wr (ZTQL) - lirgl Wr(t)
Z’?L t%zn_’_l

= Wr(z,) — Um Wr(t)=0.

=201
i) 2zl <22 < Z,,QH_l < Zr1n+1: In this case we have
zoi1 <1, 61 (2041) >0, 62 (27) = d2 (2741) =0, é1 (2n11) > 0 and ¢, (25,;) <0,
leading to
i
/22 D1Lyds — p2Lgpy = Wr(zh) —Wr(zhy)

~Wr (zn41) = =1 (2n41) 9 (2711) > 0.

v
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Fig. A
® o1
iii) 2} <22 < zgﬂ < z,%Hl: In this case we have ¢ (2721) >0, ¢ (zg) > and
0 if 22,, =1
lim Wr(t) = { pt
22 ¢1 (2p11) 05 (2n01) i 2pq < 1.

Thus, we obtain

/271+1 P1Lgps — p2Lgpr = Wr(22) — lLm Wr(t)

2
o t—>zn+1

> Wr (ZTQL) = ¢1 (zfl) ¢’2 (zi) > 0.

This ends the proof.

We end this section with the following lemma which is an adapted version of the
Sturmian comparison result.

Lemma 8. Let g € Q and for i =1,2, m; € T'" and w; € C?([0,1),R) satisfying
Low; = miw; in (x1,22)

and suppose that wa does not vanish identically, mi1 > mo and my > mg in a subset
of positive measure. If either

i) x2 < 1 and we(x1) = wa(x2) =0, or

1) v = 1 and we(x1) = limy—q w;(t) =0 fori=1,2

then there exists T € (w1, z2) such that W(r) = 0.

Proof.
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i) By the contrary suppose that wy; > 0 in (21, x2) and without loss of generality
assume that wy > 0 in (x1,x2), then we have the contradiction:

0 > wy (v2) wy (22) — wi (w1) wh (1) =
f;f U)Q,Cq’wl — wlﬁqwg = f;lz (m1 — TTLQ)’wl’UJQ > 0.

ii) By the contrary suppose that wy > 0 in (21, 1) and without loss of generality
assume that wy > 0 in (x1,1) , we have for ¢t > x; that

(w1 () wh (t) — wi () wy () — wi (z1) wh (21) =
f; woLgwy — wiLywy = f;l (m1 — ma)wiwy > 0.

Since from Lemma 5 wy, ws € W1, we have

lim (w1 (£) wh () — wh (£) wa (1)) =0 (9)

t—1

and so, the contradiction
1
0> —wy (1) wh (z1) = / (m1 — mg)wiwy > 0.

x1

The proof is complete.

2.4. The positive eigenvalue

The main result of this subsection concerns the existence of positive eigenvalues on
the bounded interval [0, 1].

Theorem 9. For allqe Q, m € I and 6 € [0,1), the eigenvalue problem

Lou = pmu, in (0,1),
{ w(6) = limy, u(t) = 0, (10)

admits a unique positive eigenvalue uf (q,m,0). Moreover for q,m fized, the func-
tion 0 — u1 (0) == p1 (g, m,0) is continuous increasing and we have limg_,; p1(0) =
+00.

Proof. Let ¢ € Q, m € TT", 6 € [0,1) and let @ be a positive constant such that
g=q+wm >0in [0,1). Consider the eigenvalue problem

Lzu = pmu, in (0,1)
{ u(f) = limg1 u(t) =0 (11)
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and notice that g is a positive eigenvalue of the bvp (11) if and only if g — @ is a
positive eigenvalue of the bvp (10).

We have from Lemma 5 that p is a positive eigenvalue of (11) if and only if p~
is a positive eigenvalue of the linear compact operator Lgg : W — W where

1

1
L@mﬂu(t):/o G3(0,t, s)m(s)u(s)ds.

Let ug € W be the function defined by

2041 240
ue(t):{o S

3
(=20 —1) ifte [Tl o,

>

we have then Lg,,, gug(t) > 0 = uy(t) for t € [0, M]U[M 1] and Lgm pue(t), ug(t) >
0 for t € (29+1 2+9) This shows that Lg,, gug > coug where
co = inf {Lgoug(t)/ug(t) : t (29+1 2+0)} > 0 and 7(Lgm,9) > 0. We have from
the Krein-Rutman theorem, that r(Lg) is a positive eigenvalue of Ly having a pos-
itive eigenvector ¢y. Obviously, 7i1(6,q,m) = 1/r(Lg ) is a positive eigenvalue of
the eigenvalue problem (11) and u1(6, ¢, m) = fi1(6, ¢, m)—w is a positive eigenvalue
of the eigenvalue problem (10).

Now, let us prove uniqueness of the positive eigenvalue. Suppose that A is a
positive eigenvalue of the eigenvalue problem (10) having an eigenfunction v, we
have then

0 _/ VLgpe + poLgh = (n1(0,q,m / maogy

leading to A = p1(0,q, m).
Let now 601,05 € (0,1) be such that 6; < 6 and set for i = 1,2, p; = p1(6;,q, m)
with the corresponding eigenfunction ;. We have

0> —1 (6 )¢1 (62) = [, algihs — 1 Lgyh
— 12) fo, MAb132

leading to p1 < pe, proving that the function 8 — uq(-) is an increasing.
At this stage let us prove the continuity of the function 8 — p;(-). Let [v,d] C
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[0,1] and 64,02 € [, d] be such that 6; < 3. We have for all u € W with || u ||=1
| Lam,o:t () = Lgm,o, (1)]

1 1
G5 (02,t,s) muds — [ Gg(01,t,5) muds

92 01

if 1< 6, < 6y,
’fe 5 (01,t,8) muds|, if 1 <t <6,
’fe 7 (02,1, ) muds — fe g (01,t,5) muds| if 6; < 6 < t.

Set

1
~ ry _
=l | ([ 6ads ) B0+t 5 ) 500
. 25)
then we have for 09 >t > 6;
)fg g(01,t,s muds’ < ”meg 7(01,t,5)ds

= Il (J, Ga (65) ds = £33 05(0) Jy, ads)
= ||m]| fe g(t,s ds—i—ft 7 (t,s)ds
9 (0

— ey () 1 dnds - 2 93 (t) J;' ¢qds)

wq (61) 1 wa(91) 1
HmH f91 g(t,s)ds — (91)¢ f91 Pgds) + g (t ft Pgds — o (01 ft Wgds)

9 ® Ga(61)
= ] (5, G (t) ds — Y5650 J1, 6ads) + J} s (225 — L )¢q< )
+

<l | (1} 63d5) 263 + G+ 23 () 040|102~ 1] < x o2 — 4

and for 91 < 92 < t,

bg
g
ég
+

fe g (02,t,5) muds — fe g(01,t,s) muds| <

f0 ( (02,t,5) — Gz (01,t,s )muds’ + ‘fe g(01,1,5) muds‘

= ‘(fe2 gi)quuds) (Zﬁzgzg ¢q(02 ) ‘ ‘ g(01,t,s muds‘
<l | (17 oads) 2403 + G| 62— o0 < x o~ 6.

¢2(9)

The above estimates show that the mapping 6 — Lg,, ¢ is locally Lipschitzian and
so, it is continuous. Let (6,,) be a sequence converging to 6, and let §_, 6, be such
that (6,) C [#—,04]. Therefore we have for all n > 1,

0<p(04) < pa(bn) < pa(0-)

125



A. Benmezai, S. Mellal and J. Henderson — Sturm-Liouville bvps ...

and the sequence (u1(6,,q, m)) converges (up to a subsequence) to some g, > 0.
We conclude by Lemma 2.13 in [3] and by uniqueness of the positive eigenvalue that
i« = p1(0x). Thus, the continuity of the mapping pq(-) is proved.

It remains to prove that

1
lim p} (0) = lim ———— = +o0.

0—1 6—1 T(qum’g)

We have for all u € W with ||ul]| =1

1
‘L@mﬁu(t)‘ < /Gq(@,t,s)m(s)ds

Ua(0) (!
< Gz (t,s) m(s)ds + et /fﬁAt@Asmsds
[ Gatsymieias + 2 [ aroastomes
1
< / G5 (t,s)m(s)ds + Uz (0)/ D5(s)m(s)ds.
0
Arguing as in the proof of Lemma 5, we Obtain limgy_,; ¥z fel s)ds = 0 and

because of fe 7 (t,s)m(s)ds < Gz f0 s)ds, we have hmg_n fe t s) m(s)ds =
0 uniformely on [0 1]. Therefore, we have proved that limg_,; T(Lq’m’g) = limg_, 1 o0 HL@
0 and this ends the proof.

3. THE HALF-EIGENVALUE PROBLEM

Consider for ¢ € Q, m € I'" and «, 3 € E the bvp:

{ Lou = Amu+ au™ — fu~, in (0,1) (12)

u(0) = limy—; u(t) =0,

where A is a real parameter.
Because that the function v — Amu+ aut — fu~ is linear on the cones {u € E :
u>0in [0,1]} and {u € E : w <0 in [0, 1]}, the bvp (12) is said to be half-linear.

Definition 1. We say that \g is a half-eigenvalue of (12) if there exists a nontrivial
solution (Ao, uo) of (12). In this situation, {(Xo,tug), t > 0} is a half-line of non-
trivial solutions of (12) and po is said to be simple if all solutions (Ao, u) of (12),
with uug > 0 in a right neighborhood of 0, are on this half-line. There may exist
another half-line of solutions {(Ao,tve), t > 0}, but then we say that Ao is simple,
if upvg < 0 in a right neighborhood of 0 and all solutions (g, v) of (12) lie on these
two half lines.
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The case of the bvp (12) where ¢ € E has been considered by Berestycki in [4].
He has proved that the bvp (12) admits two increasing sequences of half-eigenvalues.
So, the main goal of this section is to prove that the Berestycki result holds true for
the case ¢ € ). We begin with the following list of lemmas.

Proposition 1. Let ¢ € Q, m € " and a, 8 € E. If (A, ¢) is a nontrivial solution
to the bup (12), then ¢ € S} for some integer k > 1 and v = + or —.

Proof. Let € > 0 be small enough and let A > 0 be such that u(q—a,m+e¢e) > —A.

Consider the bvp

Lot Amu = Amu + au™ — fu” in (0,1), (13)
w(0) = limy—,1 u (t) =0,

and notice that X\ is a half-eigenvalue of the bvp (13) if and only if (A — A) is a
half-eigenvalue to the bvp (12). Thus, we have to prove that if (), ¢) is a nontrivial
solution to the bvp (13), then ¢ € S} for some integer £ > 1 and v = + or —. To
this aim, let (A, ¢) is a nontrivial solution to the bvp (13), we claim first that all
zeros of ¢ in [0,1) are simple. Indeed, noticing that the right hand-side in (13) is
Lipschitzian, if ¢ (z) = ¢’ (z+) = 0 for some z, € [0,1) then the standard existence
and uniqueness result of a solution to an initial value problem leads to ¢ = 0. This
contradicts (A, ¢) is a nontrivial solution to the bvp (13).

Now, we claim that ¢ has a finite number of zeros. To the contrary, assume that
¢ has an infinite sequence of zeros, say (z,) such that lim z, = z., we distinguish
then the following two cases:

i. z, €[0,1), in this situation we have

¢(zn) B ¢(Z*) _

Zn — Zx

¢ (2:) =lim¢ (2,) =0 and ¢’ (2,) = lim

This contradicts the simplicity of zeros of ¢ in [0,1).
ii. z, = 1, in this case ¢ satisfies for all n > 1

Lyt amu = Amu + au™ — fu~ in (0,1),
u(zp) = limy_yy u () = 0.

Let for all n > 1 p, = p1(q + Am — o, m + ¢, z,,) the positive eigenvalue given
by Theorem 9 and let 1, the normalized positive eigenfunction associated with p,.
Notice that

in = pa(g+Am—a,m+e,2,) > g+ Am—a,m+¢) = py(g—a,m+e)+ A > 0.
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We claim now that for all integers n > 1, A > u,. Indeed, let [ > n be such that
¢ > 01in (2, 21+1), we obtain from Lemma 7 that

2141 2141 2141
0< [ intad+ bLgpn i [ o= =) [ mou,
21 21 2]
leading to A > .
Therefore, we obtain from Theorm 9 the contradiction
A > lim gy, = limpg (¢ + Am — a,m + €, z,) = +00.

This completes the proof of the lemma.

Proposition 2. Forqe Q, m el a,3 € E, k> 1 andv =+ or — the bup (12)
admits at most one half eigenvalue having an eigenfunction in Sj.

Proof. Let (A1, ¢1) and (A2, ¢2) be two nontrivial solutions to the bvp (12) such that
A1 # A2 and ¢1, ¢2 € Sf for some integer k > 1 and v = +, —, and denote for i = 1,2

(z;)jz the sequence of zeros of ¢;. First, we claim that there exists jg such that
zjl-o #+ 232‘05 indeed, assume that ¢ (z?) =0forall j € {l,....k—1} and \; < A2 and
note that there exists j; € {1, ...,k — 1} such that meas <{m >0}N (zjzl,zjzlﬂ)) >
0 and ¢1¢20 > 0 in (z]zl,zjzl +1)' Applying Lemma 8, we conclude that there is
TE (z?l, zj?lJrl) such that ¢1 (7) = 0 and this contradicts ¢; € S}.

Now, let k; = max {l <k: 2]1 = 2]2- for all j < l} and (gj)gz’g—lﬁ and (”j)ﬁiﬁ"“
be the families defined by &; = Zlh +j and n;j = zil +; and without loss of generality,

assume that &, = z,il 1 <m= z,%l 41- We obtain from Lemma 6 that there exist two
integers m,n > 1 having the same parity such that

_ 1 _ 2 _ 2 _ .1
Em = Zhi4m <M = Zig4n < Tntl = Zky4ntl <&mt1 = 2k +m+1

and we have from Lemma 7 that

31 &
0< G2Lgdp1 — 1Ly = (A1 — )\2)/ meo1¢2 (14)
&o &o
0< /Wl P1L402 — paLyr = (N2 — A1) /W mo1¢s. (15)

Therefore, we obtain from (14) that A\; > A2, and from (15) the contradiction
A1 < Ao. This ends the proof.
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Proposition 3. Let ¢ € Q, m € T'", o, 8 € E and assume that (M1, 1), (A2, $2)
are two solutions of the bup (12) such that ¢; € Sf.f“” fori=1,2. If ko > ky then
Ao > Aq.

=k
Proof. By the way of contradiction assume that Ao < A\; and let for ¢ = 1, 2, (z;) -

j:

be the sequence of zeros of ¢;. Set k, = max{l <k: 2]1 = zjz for all j < l} and
consider (@-);ig_kl and (nj);:ig_kl the families defined by &; = z,i*_w- and n; = zg*ﬂ-.
We distinguish then two cases.

i) & = 211*+1 >n = Zl%*-',-l' In this case we have from Lemma 7

1 1
0< [ 61Lybs — daLydr = (Na— M) / 1o
10

70

leading to the contradiction A\; < As.

ii) & = z,i* g <m= zg* 41+ In this case, Lemma 6 guarantees existence of two
integers m, n having the same parity such that

_ 1 .2 .2 1
Em = Zirm < = 2l qn < Mntl = 2y qng1 S Em+1 = Rl +m—+1-

and we have from Lemma 7

Mn+1

0< / T Ly — daLydr = (o — A1) / M1 b,

n

leading also to the contradiction A1 < As.

This ends the proof.

Proposition 4. Let ¢ € Q, m € I'" and o, 8 € E. If X is a half-eigenvalue of the
bup (12), then X is simple.

Proof. Let A be a half-eigenvalue of the bvp (12) having two eigenfunctions ¢1, ¢o
and without loss of generality, assume that ¢1,¢2 > 0 in a right neighborhood of
0. Because of Proposition 3 we have that ¢1, ¢9 € S,j for some integer k > 1. For

i=1,2, let (z;);:g_l be the sequence of zeros of ¢;. We have that zjl = zj2 for all
j =0,...,k. By induction, clearly z} = 23 = 0 and if 2]1 = 2]2 then z}ﬂ = ZJQ-+1.

Indeed, if for example zjl» 1 < 232» 1, then Lemma 7 leads to the contradiction

1

Z-+1

0< [ 6atsn—irLya =0
i
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Because of the positive homogeneity of (12) and ¢1, g2 € S}, ¢1(0) > 0, ¢5(0) >
0 and 11 = (¢,(0)) " ¢1, Yo = (¢5(0)) " ¢ are eigenfunctions associated with A
satisfying
¥1(0) = ¢2(0) = 0 and 91(0) = 95(0) =

Therefore, 1 = 11 — 1o satisfies

{ Lot = pmap + apt — B~ in (0, 2}),
¥(0) =¢'(0) =

proving that 11 = 19 in [0, 1]. This completes the proof.

In what follows and when for functions ¢ € Q, m € I't and «, 8 € E the half-
eigenvalue of the bvp (12) associated with an eigenfunction in S} exists, this will be
denoted by A/(q,m, o, ).

Proposition 5. Let q1,q2 € Q, m € I'", oy, a9, 61,82 € E and assume that for
some k > 1 and v = :l:; )\Z(q17m7a1761)1 )\Z(q%maabﬁl)a )\Z(qlvmaa%ﬂl) and
N (q1,m, 1, B2) ewist.

1. If oq < ag a.e. in (0,1), then A} (q1,m, a1, B1) > A(q1,m, a2, B1).
2. If ﬁl S 52 a.e. in (07 ]-)7 then )‘Z(quval?ﬁl) Z )‘Z(ql)m7 a17/62)'
3. If q1 S g2 a.e. m (07 1)7 then )‘%(qlvmvalvﬁl) S )\Z(q27m7a17/81)'

Proof. We present the proof of Assertion 1. Assertion 2 is checked similarly and
Assertion 3 is a consequence of Assertions 2 and 1. Suppose that a1 < a9 and for
i =1,2,set \; = A[(m, a4, B1). Let ¢; be the eigenfunction associated with \; having
a sequence of zeros (z;)iilg We distinguish two cases:

i). 1 = 22 for all j € {1,...,k—1}. Let j1 € {1,...,k — 1} be such that
meas({m > 0} ﬂ (22 25 J1+1)) > 0, we have

0= fzzjzﬁl 2L — d1Lgd2 = (A1 — A2) |, ]21+ meo1 P2
—I—f “H (10 ¢2 — a2y ¢1) + f i (51¢1_¢2 — P15 b1) (16)

= ()\1 A2) |, ]21+1 maeo1p2 + f i (061<Z5T¢2 — a3 ¢1) .

Thus, from (16) in both the case ¢1, g2 > 0 in (22
(2 ]21, ]21+1), we obtain A\ > As.

zj,s j1+1) and the case ¢1, P2 < 0 in
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11) 2]0 7é - for some jo: In this case set k1 = max{l < k : z = 22 for all j <1}.
If zk1+1 < Zk1+1’ then

Zli1+1 zlil-s-l Zlil-s—l
0< /1 $2Lgpr — 01LgP2 = (A1 — A2) /1 mae1p2 + /1 (a1 — a2)p12

k1 k1 k1

proving that gy > po and if z,% 41 < z,i +1 then considering the families (fj);jg*kl
and (77]); IS M with & = zk +j and n; = zk +j» we obtain from Lemma 6 that there

exist two integers m,n > 1 having the same parity such that

_ .2 1 o 2
Em = Zkyam < = Zkyin < T+l = 2k 4nt1 < Smtl = 2itmal-

Therefore, we obtain from Lemma 7

Mn+t1 Mn+1 NMn41
0< [ batytn = rLgtr= =) [ marent [ (o~ an)onen
n MNn n
leading to A1 > Ao.
This completes the proof.

Proposition 6. Let g € Q, mi,mo € I'" and o, f € E. Assume that my < mg in
(0,1), m1 < my in a subset of positive measure and Xy (q,m1,a, 3), A/ (q,ma, o, 5)
exist for some integer k > 1 and v = + or —. If either N[(¢,m1,o,3) > 0 or
N (g, ma, a0, B) > 0, then A} (q,m1, o, f) > X(q, ma, o, B) and if either X\ (q,m1, o, 5) <
0 or X/(q,ma,a, 3) <0, then A/ (q,m1,c, B) < X/ (g, ma,a, 3).

Proof. Assume that for i = 1,2 )\ = A/(m1, o, ) exists and has an eigenfunction
qﬁ, havmg a sequence of zeros (z ) = ]5 First, we clalm that there exists jg such that

7é zjo Indeed, if ¢1(z; %) =0 for all j € {1,. — 1} and j; € {1,. — 1} is
Such that meas({mg > ml} N (22 25 J1+1)) > 0, then taking in account that qblqbg >0
in (z 31, J1+1) we obtain by means of Lemma 8 in the case A\; < Ay (the other caes is
checked similarly) that there exists 7 € (22 5025, # .1) such that ¢;(7) = 0. Obviously,
this contradicts ¢1 € SY.

Now, let k1 = max{l < k : z = z2 for all 7 <1}, and (@)j =M and (nj)i IS h
be the families defined by §; = zk 4 and n; = zk 4 Assume that \; > 0 or A2 > 0,
we distinguish then two cases.
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i. & = z,iﬁ_l <n = Zl%1+1: In this case we have from Lemma 7

&1 &1
0< /5 ¢2£q¢1 — (Z51£q(252 = /5 (/\1m1 - )\2m2)¢1¢2

&1 &1
= (A1 —X2) myg1p + )\2/ (m1 —ma)d1¢2
o &o
&1 &1
= (A1 — \2) map1p2 + )\1/ (m1 — ma)p1¢2
o o

and this proves that in both the cases A\; > 0 and Ay > 0, we have A\; > Ao.
ii. & = z,il > m= zﬁl +1° In this case Lemma 6 guarantees existence of two
integers m, n having the same parity such that

_ 2 1 1 )
M = Zki4n < &m = 2k tm < Sm+1 = Zby4mt1 < Dntl = 2k, 4nt1-

As above, we have from Lemma 7

Em+1 Em+1
0< / P1LgP2 — P2 Lyd1 = / (Aama — Aim1)p1¢2
Em Em

Em+1 Em+1
= (A2 — )\1)/ map1p2 + )\1/ (ma —m1)p1¢2

Em &m

Em+1 Em+1
= (M- )\2)/ mad1p2 + )\1/ (m1 —ma)d12
Em Em
and this proves that in both the cases A1 > 0 and Ao > 0, we have A\; > Ao.
Assume that \; <0 or Ay < 0, we distinguish then two cases.
iii. & = Z%}l‘i‘l >n = Zl%1+1: In this case we have from Lemma 7

m

m
0> /n " tnytn — nLyt = /n O = doma)ind
U

m
= (A1 —A2) mip1p2 + )\2/ (m1 —m2)p1¢2

o 70
U m

= (A1 — A2) mad1¢2 + )\1/ (m1 — m2)p1¢2
o 70

and this proves that in both the cases A1 < 0 and Ay < 0, we have A\; < Ao.
iv. & = Zlil+1 <m= Zl%ﬁl: In this case Lemma 6 guarantees existence of two
integers m, n having the same parity such that

_ 1 _ 2 .2 1
Em = Ziytm <M = Zky4n < M+l = Zjggny1 = Em+1 = Rl +m—+1-
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As above, we have from Lemma 7

0> /nn+1 $1LgP2 — P2 L1 = /nnﬂ()‘?mQ = A )é162

Mn

Nn+1 Tn+1
= (A2 — >\1)/ mad1p2 + )\1/ (m2 —m1)p1¢2

n

Tn+1 TIn+1
= (A1 — Az)/ mad1¢2 + )\1/ (m1 —ma)p1¢2

Mn Nn

and this proves that in both the cases Ay < 0 and Ao < 0, we have A\; < Ay. The
proof is complete.

Lemma 10. Let (¢,) be a sequence in S} converging in W1 to some ¢ € Sr, then
I <k and k = v.

Proof. On the contrary suppose that ¢ € S} for some [ > k and let (zj)gj) be the
sequence of zeros of ¢. Let § > 0 be small enough that there exists an integer n, > 1
such that ¢¢,,, > 0 in the intervals [0, z; — 0] and [z; + 0, zj41 — ] for j = 1,....,1—2.

Also, for each integer j € {1, ....,] — 1} there exists n; > n, such that the function
¢n; has exactly one zero in [z; + 0, zj41 — 0] . Otherwise if there is a subsequence
(¢n,) such that for all i > 1, ¢, has at least two zeros, then we can choose $,111 and
x2 in [zj + 6, zj41 — 6] such that

ng
O, () SO <6, (an,) -

Let 1 1 1 1
3312nf = lim inf xgl xaup = limsup :Ezni
Ty = liminf 2y, x5, = liminf z; .

Hence, we have since ¢ = lim ¢,, in W1,
6 (what) = & (vhar) = @ (wup) = & (22) = 0
leading to lim 1‘71% = lim :'3%1 = z; then to
¢ (z) = lim gy, (z,) = limey, (a7,) =0,

contradicting the simplicity of z;.

Now, we claim that there exists ng € N such that for all n > ng, ¢¢, > 0 in
(0,6) . Indeed, if there a subsequence (¢,,) such that for all i > 1, ¢,,, has at least
a zero T, with ve), (r,,) < 0, then we obtain as above for x_ = liminfz,, and
x4 =limsupz,, ¢ (z-) = ¢ (z4) =0 and z_ = x4 = 0. Therefore, we have

0 < v¢ (0) = limve,, (zn,) <0,

contradicting the simplicity of the zero zg = 0. The proof of the lemma is complete.
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Proposition 7. Let ¢ € Q, m € Tt o, € E and let (my) be a sequence of
functions in 't such that limm,, = m in E. If for some integer k > 1 and v = + or
—, A (q,mn, o, B) exits for all n > 1 with limy,_1 o0 A (¢, M, 0, f) = X € R, then
A= X (g,m,a, ).

Proof. Let for all integers n > 1 ¢,, € S} be the normalized eigenfunction associated
with Ay, = X (¢, mn, o, B) = A} (¢T,mp,a+q ,B+q"). Therefore, we have for
all integers n > 1

Pn (t) = )‘Z,nLq+,mn on (1) + L;+7a+q— on (1) — Lq_+,5+q— Pn (1)

Since all the operators in the above equation are compact and (¢;,) is bounded, up
to a subsequence, (¢,) converges to some ¢ with ||¢|| = 1 and

O () = MLyr () + LE o 6(0) = Loy sy 0 (0).

This proves that A} is a half-eigenvalue of the bvp (12).

We have from Lemma 10 that ¢ € Sy with [ < k. Let us prove that [ = k. We
claim that there is an integer ny > 1 such that ¢¢,, > 0in (21 +6,1). Indeed, if
there a subsequence (¢, ) such that for all i > 1, ¢,,, has at a zero zp,, € (2;-1 + 9, 1)
and ¢,, does not vanish in (z,,,1) then

)\Z,n = /‘Ll(Q+Am - wam—l_eaxni) > Hl(q+Am —w,m +8,$ni)
where
| aif ¢y, >0in (zp,,1)
| Bifdn, <0in (z,,,1)
and w = max (|o],|5]) .
Passing to the limit, we obtain the contradiction

+oo > AN > limp (¢ + Am —w,m + €, zp,) = +00.

From all the above, we obtain for all n > max{n*,ny,ni,...n_1} ¢n, belongs
to S7, and | = k. The proof is complete.

Lemma 11. (/2/)Let g€ Q, m € T™" and o, 3 € E. For all § € (0,1) the bup

Lou = Amu+ au™ — pu~, in (0,0),
u(0) =u(f) =0,

admits two increasing sequence of simple half eigenvalues ()\,j(q, m,a, 3, 9))k>1 and

(A;(q,m,a,ﬁ, 9))k21 such that for all integers k> 1 and v = + or —, the corre-

sponding half-line of solutions lies on {\/(q,m,a, 3,0)} x Sy,. Moreover, for all

integers k > 1 and v = + or —, the function § — X/ (6) = A/ (0,q,m,a, 3,0) is

continuous decreasing and limg_,o A}/ (0) = +oo.
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Lemma 12. For all functions ¢ € Q, m € TT" and o, B € E, the bup (12) admits
two increasing sequences of half-eigenvalues ()\z (¢, m, a, B))k>1 and ()\,;(q, m, a, ﬂ))k>1
such that for all integers k > 1 and v = + or —, the corresponding half-line of solu-
tions lies on {uy(m, o, f)} x SY.

Proof. Let ¢ €,Q,m € " and «, 3 € E. Clearly for k = 1, we have /\ﬁ(q,m, a,fB) =
wi (g —a,m,0) and AL (g,m,a,B) = w (g — B, m,0) that existence is guaranteed by
Theorem 9. Fix k > 2, v = + or — and set w; = a and wy = (. Let for 0 € (0,1)
N_1(0) =X/ _1(q,,m,a, 3,0) and for i = 1,2 p;(0) = pj (¢ — ws, m, ) given respec-
tively by Lemma 11 and Theorem 9. Because that the function A} _,(-) is decreasing,
the functions pu;(-) are increasing and

1' )\V 9 :l 19 = y
Lim Ay (0) = lim 1;(0) = +o0

the equation \;_,(#) = p;(f) admits a unique solution 6 ; € (0,1).
Let for 6 € (0,1), 1 be the eigenfunction associated with A\}_, () and for i = 1,2
¢9,i be the eigenfunction associated with p;(). We distinguish the following cases:
a) ¥, (0) > 0 for all @ € (0,1). In this case A} = X/_;(0p1) = pi(Op,1) is the
half-eigenvalue having as an eigenfunction the function vy, € SY defined by

1/} (t) B 1/)916’1(15) for t € [0,9&1] ,
T 00000 ®) (Vo Ok /05,1 (Br1))  for t € [Bh1,1].

b) ¢, (8) < 0 for all & € (0,1). In this case A} = A]_;(0r2) = pi(Ok2) is the
half-eigenvalue having as an eigenfunction the function 13, € Si defined by

balt) = Vo, , () for t € [0,0y 2],
T 000 0) (V02 On2) /6, , Or2))  Tor £ € [B,1].

This ends the proof.

Lemma 13. Let g € Q, m € '™ and set for all k > 1
:u’k(Q7 m) = AZ(Q7 m, 07 0) = A]; (Q7 m, 07 0)

Then fOT any interval [’Ya 6] C (07 1)! Nk((b m) < :U’k(Qa m, [75 5]) where (:U‘k(Q7 m, h/v 5]))
is the sequence of eigenvalues of the bup

{ Lou = pmu, in (7,0),
u(y) =u(d) =0.
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Proof. Fix k > 1 and set u1 = pg(g, m) and pa = pug(q, m, [, 9]). Let for i = 1,2, ¢;
Nj=k
be an eigenfunction associated with u;, having a sequence of zeros (zj’) o’ and
]:
without loss of generality, suppose that ¢1¢2 > 0 in a right neighborhood of . We
distinguish two cases.

i) ¢2 > 01in (v,9) (i.e. k=1): In this case we obtain by Lemma 7

5 5
0< /7 $1Lgp2 — p2Lyp1 = (2 — Nl)A meoipz

leading to po > p1.

ii) ¢2 (t9) = 0 for some tg € (,0): In this case consider the family (fj)gzgo defined
by &0 =7, &k, = 0 and ¢y (§;) =0 for j € {1,..., ko — 1} and note that ko < k.
Thus, we have from Lemma 6 that there exist two integers m,n having the
same parity, such that &, < 22 < szH < &mn+1- Therefore, we have ¢1, g2 > 0
in (Z,QL, Z%H) and we obtain by Lemma 7

ZZ+1
0 < / $1Lyd2 — daLydr

n

= (p2—m) /;H meo1¢2

n

leading to pe > 1.
This ends the proof.

Theorem 14. Forallq € Q, m € I'" and o, 8 € E the bup (12) admits two increas-
ing sequences of simple half-eigenvalues ()\;(q, m,a,ﬁ))k>l and ()\,;(q,m, a,B))k>1
such that for all integers k > 1, the corresponding half-line of solutions lies on
{uf(m,a, B)} x S, v = +, — with limg_,o pf (g, m, , f) = +00, aside from these
solutions and the trivial one, there are no other solutions of (12). Furthermore, for
k>1 and v =+ or —, the half-eigenvalue A} (-,-,-,-) has the following properties:

1. Letge Q,m el anday,az, € E. Ifa; < a in (0,1), then X (q,m, a1, 8) >
)‘Z(q’mv a?aﬁ)‘

2. Letqe Q,meTlt anda, B, P2 € E. If 1 < B2 in (0,1), then X/(q,m, o, B1) >
)‘Z(q)mvaaBQ)-

3. Letqi,q2 € Q7 me Tt anda76 SN [fQI < g2 in (07 1)7 then )‘Z(qlam7a7ﬁ) <
)\Z(q27m7auﬂ)'
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4. Let my,mg € T, o, € E, with my < ma in (0,1) and m1 < mg in a
subset of positive measure. If A (mi,o, ) > 0 or A/ (mg,a, ) > 0, then
)‘Z(Q7m17a7ﬁ) > )‘Z(qv m27a75) and Zf)‘Z(Qa ml,Oé,B) <0 or )\Z(Q7m21a7ﬁ) <
0, then A (q,m1,a, B) < A(q, m2,a, ).

5. Ifm € TF and (my,) C T are such that limm,, = m in E, then lim \/(q,my,a, 3) =
n—o0
Ai(g,m, e, B) for all a,B € E.

Proof. Let g € Q, m € 'Y, o, 8 € E and (e,) be a decreasing sequence of real num-
bers converging to 0 and let A > 0 be such that min (u1(¢ — a,m + €1), u1(q — 5,m +€1)) >
—A. Consider the BVP

(17)

Lyt amu = Amu + ou® — fu in (0,1),
u(0) = limy 1 u (t) =0,

and notice that X is a half-eigenvalue of the (17) if and only if (A — A) is a half-
eigenvalue of the bvp (12). Let for k and v fixed, Mo = N(g+Am,m + €,, o, B)
and let [y,d] C (&,n) be such that m > 0 a.e. in (v,9).

First, because of

Az,l = )\Z(Q—FA’I’)’L,’I?’L—F 61704;5) > AI{(Q7m+ elvaaﬁ) +A
> min (:U’l(q —o,m+ 61),,&1((] - ﬁam+ 61)) +A> 0,

we have by Proposition 6 that for all n € N, Mgl = Mo = Ap1 > 0.
Set ¢ = g+ Am + (Ja| + |B|) , Proposition 5, Lemma 13 and Proposition 6 lead
to
0 <A, < pe(@m+ en) < (g, m 4 en, [v,0]) < pr(q, m, [, 6])

proving that lim Ay | = Af’ € R. Thus, we conclude from Proposition 11 that A} =
Mg+ Am,m, a, ).

Now, we need to prove that limjy_, A (¢ + Am, m, «, 3) = +00. To this aim set
w = |a]+|5] and let B > 0 be such that § = ¢+ Am —w+ B (m+¢€)>0in [0,1).
We have then from Propositions 5 and 6:

)\Z(q—i—Am,m,a,ﬁ) A Q+Amam+€1aa’ﬁ)

q+Am,m+61,w,W)

AVARAVARY]
>~
SN

(
(
(q—f-Am,m—i—el,w,W)
pe(q+ Am —w,m+ €)
(

|
T
=
<
3
+
AN
|
Sy
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Because that (ur(g, m + €1)) is the sequence of characteristic-values of the positive
compact operator Lg e, : W — W defined for u € W by

1
L peyult) = /0 Galt, ) (m () + 1) u(s)ds,

we have that limy, p, (g, m+e€1) = 400, proving that limy A} (¢+Am, m, a, B) = 4o00.
At the end, Assertions 1, 2, 3, 4 and 5 follow from Propositions 1-7.

For the particular case of the bvp (12) where a = 8 = 0, namely for the bvp

L,u = pmu, in (0,1)
{ ugO) = limy 1 u(t) = 0, (18)

we obtain from Theorem the following corollary.

Corollary 15. For all pairs (q,m) in Q x I'", the set of eigenvalues of the bvp (18)
consists in an unbounded increasing sequence of simple eigenvalues (pg(q,m)) >
such that eigenfunctions associated with py(q,m) belong to Sy. Moreover, the map-
ping pi(-,-) has the following properties:

1. Let ¢ € Q, my,mg € T'" with my < ma in (0,1) and m1 < mg in a subset
of positive measure. If ur(qg,m1) > 0 or pr(q,ma) > 0, then ux(q,mi) >
k(g mz2) and if pg(g,m1) <0 or ug(g,ma) <0, then ug(g, m1) < pr(g, ma).

2. Ifm € T and (m,) C T'" are such that limm,, = m in E, then lim,,_,o ux(q, mn) =

3. Let q1,q2 € Q and m € T'T. If q1 < qo, then pr(qr,m) < px(ga,m) for all
k> 1.

The following proposition is a consequence of Assertion 2 in Corollary 15 and it
will be used in the following section.

Proposition 8. Let ¢ € Q and m € T'" be such that ug(q,m) =1 for some integer
k > 1. Then there exists g9 > 0 such that for all p € T with ||[p—m]| < eo,
wi(g,p) =1 implies | = k.

Proof. Let ey > 0 be such that ey < min(ss1 (¢, m) i (g m), (g, m) i1 (¢, m)).
Because of the continuity of the functions ux_1(q, m), pgr1(q, m), there exists eg > 0
such that for all p € T", ||p — m|| < e implies

pr—1(q,m) — €0 < pr—1(q,p) < pr—1(g,m) + €o (19)
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and
prs1(g,m) — €0 < prrg1(q, p) < prs1(q, m) + eo. (20)

Let p € I't with ||p — m|| < &p and suppose that y;(q,p) = 1 for some integer
[ >1.1f I <k, we have then from (19) the contradiction

1= (g, p) < pr-1(q,p) < pr—1(g,m) + €0 < pr(q, m),

and if [ > k, we have then from (20) the contradiction

1= (g, p) = prs1(q,p) = pry1(q,m) — €0 > px(q,m) = 1.

This shows that [ = k and the lemma is proved.

4. NODAL SOLUTIONS TO THE NONLINEAR BVP
4.1. Main results

In all this section, p is a positive real parameter, ¢ is a function in @, m, o and 3 are
functions in E and f : [0,1] x (R~ {0}) — R is continuous function. Main results
of this section concern existence of nodal solutions to the bvp

Lou = puf(t,u)in (0,1)
{ u(0) = limy 1 u(t) = 0, (21)

where the function f is assumed to satisfy one of the following Hypotheses (22), (23)
and (24).

limy, 0 f(t,u) = m(t),
limy o f(t,u) = B(t) and (22)
limy 400 f(t,u) = a(t) in E.

{ limy—0 f(t,u) = m(t) in E and

i i 23
lim gy 4 o0 (infyepo) f( 1)) = +oo. (23)

limy, o uf(t,u) =0,

limu_>0 (infte[o’l] f(t, u)) = +00, (24)
limy, oo f(t,u) = B(t) and

limy 400 f(t,u) = a(t) in E.

Remark 1. Notice that if the nonlinearity f satisfies one of the Hypotheses (22),
(24) and (23), then there is wy € T such that f(t,u) +wo (t) > 0 for all t € [0,1]
and u € R.
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The statements of the main results of this section and their proofs require intro-
ducing some notations. In all this section we let:

g:q++p<mi+2w0)v m:p(er—l—Qwo)—f—q*, f(t,u):p(f(t,u)—m),

d=pla—m), B=p(B-m), p=inf(a,B) and o =sup(at,p"),

where wq is as in Remark 1.
Since in all this section the weight ¢ is fixed in @, we let for all y € I'" and all
k>1, pup (x) = pr (g, x) . In particular we let for all £ > 1 and v = + or —,

The operators Ty, Too : W — W are defined as follows

Tou(t) = [ Ga(t, s)u(s) f(s,u(s))ds,
Toou(t) = Tou(t) — LLzult) + L{%gu(t)

,

= [ Gy(t, s)u(s) f*(s,u(s))ds,

where f*(s,u) = uf(s,u) — qu™ + Bu~. We have from Lemma 5 that Ty, Th are
completely continuous.

The following Theorems 16, 18 and 17 are the main results of this section. They
provide respectively existence and multiplicity results for the cases where the non-
linearity f is asymptoticaly linear, sublinear and superlinear.

Theorem 16. Assume that Hypothesis (22) holds true.

1. Let i,j be two integers such that i > j > 1. The bup (21) admits in each of
Sj'-", ce SZT", S5 5555, asolution if one of the following Hypothesis (25), (26),
(27) and (28) holds true.

p.m* €T and pi(p) < p < pi(m™), (25)
pel™,mt =0, ui(p) <pand
. (26)
1i(xo0) > 0 for some xo € T

Y,mel" and p; < p < p;(¥), (27)

{ meTlT, ¢ =0, u(m) < p and

1;(x0) > 0 for some xo € I'". (28)
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2. Let i,j be two integers such that i > j > 1 and i > 2(j — 1). The bvp (21)

admits in each of S;'j, ey Sf, SQ_j_l, ..., S, a solution if one of the following
Hypothesis (29) and (30) holds true.
m, 37 € T and pi(m) < p < p;(B7), (29)

+ g+ — .
{mEF ,B7 =0, pi(m) < p and (30)

wi(xo) > 0 for some xo € T't.

3. Let i,j be two integers such that i > j > 1 and i > 2(j5 — 1). The bvp (21)
admits in each of S;rj_l, ceey S;r, S;j, ..., 5, a solution if one of the following
Hypothesis (31) and (32) holds true.

m,at € T and pi(m) < p < pj(a™), (31)

{ meTlt at =0, pi(m)<p and

1;(x0) > 0 for some xo € I'". (32)

Theorem 17. Assume that Hypothesis (23) holds true and let j > 1. The bup (21)
admits for all k > j a solution in S,j and in S, if one of the following Hypotheses
(33) and (34) holds true.

mt e and pj(m™) > p, (33)
mt =0 and pj(xo) > 0 for some xo € I'". (34)
Theorem 18. Assume that Hypothesis (24) holds true, ¢ € Q4 and let j > 1.

1. The bup (21) admits for all k > j a solution in S; and in S, if one of the
following Hypotheses (35) and (36) holds true.

Y eTF and p;(v) > p, (35)
Y =0 and p;(xo) > 0 for some xo € T'T. (36)

2. The bup (21) admits a solution in S,j for all k > 2j and a solution in S, for
all k > 25 — 1 if one of the following Hypotheses (37) and (38) holds true.

Bt eI and () > p, (37)
BT =0 and p;(xo) > 0 for some xo € T'". (38)

3. The bup (21) admits a solution in S,j for all k > 25 — 1 and a solution in S,
for all k > 27 if one of the following Hypotheses (39) and (40) holds true.

ot €Tt and pj(a™) > p, (39)

at =0 and pj(xo) > 0 for some xo € T (40)
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4.2. Related Lemmas
In this subsection we prove some intermediate results.
Lemma 19.
1. If m € Tt and pu(m) < p for somel > 1, then fx < 1 for all k < 1.
2. If m™ € T and p; (m™*) > p for some | > 1, then fiy > 1 for all k > 1.

3. If m=—m~ and p; (x0) > 0 for some 1l > 1 and xo € T'", then i, > 1 for all
k>1.

Proof. If m™ € I'", we have then

e = (g7 + p(m™ + 2wo), p (m™ + 2pwo) +q7)
= pk (¢ + 2pwo + pm~ — ig (2pwo + ¢~ ), pm ™)
= pu (g + (1 — ) (2pwo +q7) , pm™)
= (p (g + (1 — ) 2pwo + ¢~ ) + pm™=,m™) /p).

(41)

Suppose that m = m* € I'", p; (m) < p for some [ > 1 and fi > 1 for some k < .
We obtain from (41) and Assertion 3 in Proposition 5 the contradiction

U< = (e (g + (1= ) (2000 +¢7) sm) /p) < (u (m) /p) < (ru(m)/p) < 1.

This proves Assertion 1.
Similarly, suppose that m™ € T'", 1y (m) < p for some [ > 1 and ji; < 1 for some
k > 1. We obtain from (41) and Assertion 3 in Proposition 5 the contradiction

1> i = (e (g + (1= fix) (2pwo + ¢7) + pm™,m) /p) < (e (m) /p) = (m(m)/p) > 1.

This proves Assertion 2.
Suppose that m = —m™ (i.e. m™ =0), p; (¢, x0) > 0 for some [ > 1 and xo € I'"
and fip < 1 for some k > [. We read from

e = pe (g +p(m™ +2wo), p(m™ +2wy) +q7)
= Uk (qJr + p (m + 2wy) , 2pwoy + q*)

that
2% (q + (1 — fg) (2Pwo + q_) ,X) =0 for all y € rt.

Therefore, Assertion 3 in Proposition 5 leads to the contradiction

0 =gk (¢+ (1= k) (2000 +¢7) » x0) = s (x0) = p (x0) > 0.

This Proves Assertion 3 and ends the proof.
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Lemma 20. For all integersl > 1 and v =+ or —:
1. If p € Tt and (p) < p for some | > 1, then Xz <1 forall k <.

2. If Y € T and () > p for some l > 1, then le > 1 for all k> 1.

3. If v = 0 and p; (xo) > 0 for some l > 1 and xo € ', then i, > 1 for all
k>1.

Proof. To prove Assertion 1, we have to show that X;’ > 1. By the way of contra-
diction, suppose that 1;(¢) < p and A} > 1 and let u,v € S} be the eigenfunctions
associated respectively with p;(pp) = (()/p) and A/. Notice that

Lyu = m(pp)ppu in (0,1),
u (0) = limy—,1 u(t) =0,
L= (X;r - 1) (pm + 2pwo + q~ v + pav™ — pBv~ in (0,1),
v (0) = limy—; v(t) = 0,
Let (mj)jj) and (yj);j) be respectively the sequences of zeros of u and v. We

distinguish then the following two cases:
i) z1 < yp: in this case we have the contradiction:

1
0 < / vLgu — ulyv

0

1
< / pu(pp) ppuv — (pav™ — pBu~) u
X

0

= /Il (lu(pe)e — ) pu™ o™ + (u(pe)p — B) pu~v™ <0,

0

ii) 1 < x1: in this case Lemma 6 guarantees existence of two integers m,n
having the same parity such that y,, < xp, < p+1 < Yym+1 and Lemma 7 leads to
the contradiction:

Tn+1
0 < / vLgu — ulyv
Tn

IN

Tn+1
/ pu(pe) ppuv — (pav™ — pfu~) u
Tn

= / " (ulpe)e — a) putut + (ulpe)p — B) puv™ <0
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We prove Assertion 2 by the same way. Suppose that p;(¢) > p and XE’ <1 and
let u,v € S} be the eigenfunctions associated respectively with p;(py) = wi(¥)/p
and /. We have that

{ﬁqu = pu(p¥)ptpu in (0,1),
0,

w (0) = limy_y1 u(t) =

Lo = (XE’ - 1) (pm + 2pwo + ¢~ )v + pav™ — ppv~ in (0, 1),
v (0) = limt_>1 U(t) = 0,

Let (xj)gj) and (yj);j) be respectively the sequences of zeros of u and v. We
distinguish then the following two cases:
a) z1 < yi: in this case we have the contradiction:

z1
0 < / vLgu — ulyv

zo

< / () o — (pav™ = pBv~ ) u

Zo

N /‘”1 (i (p) — @) putv™ + (mlpp)p — B) puv™ < 0.

zo

b) y1 < x1: in this case Lemma 6 guarantees existence of two integers m,n
having the same parity such that y,, < x, < Tp+1 < ym+1 and Lemma 7 leads to
the contradiction:

Tn41
0 < / vLgu — ulyv
Tn

IN

/ " o) — (pav® — pBvT)u

/ " (i (p) — @) puv™ + (lpp)p — B) pu~v™ < 0.

We have for all £ > 1 and v = + or —,

= Mg+ plm™ 4 2w) + ¢, p(m™t 4+ 2wo) + g7, p (e —m), p(8—m))
= A (" + p(m™ +2wo) + g7, p(m™ + 2wo) + ¢, pa, pfB) .

This can be read that for all y € I'"
0= A% (q + (1 - XZ) (p(m™ + 2w) +q7) ,X,pa,pﬁ) :

144



A. Benmezai, S. Mellal and J. Henderson — Sturm-Liouville bvps ...

Therefore, if 1» = 0, p; (x0) > 0 for some [ > 1 and xo € I'" and Xz < 1 for some
k > 1, Proposition 5 leads to the contradiction

0 = X\ (q + (1 - XZ) (p(m™ + 2wo) + q7) ,Xo,pa,pﬁ)
> A, (4,%0,0,0) = px (x0) > pu (x0) > 0.

The proof is complete.

Lemma 21. 1. Ifa™ € T'" and w(at) > p for some l > 1, then XZ > 1 for all
k>2l—1and \;; > 1 for all k > 2I.

2. If a™ = 0 and w(xo0) > p for somel > 1 and xo € I'", then X: > 1 for all
k>2l—1and \;; > 1 for all k > 2I.

3. If BT € T and (B8%) > p for some |l > 1, then XZ > 1 for all k > 21 and
Ay > 1 forallk > 20— 1.

4. If B =0 and w(xo) > p for some l > 1 and xo € T'", then X;‘ > 1 for all
k>2l—1and \;; > 1 for all k > 2I.

Proof. To be brief, we present the proof of Assertions 1 and 2, the other assertions
are obtained similarly. Suppose that o € T't and (o) > p and let ¢, 9, ¢

be respectively the eigenfunctions associated respectively with p; (), )\;Fl and A,;.
Thus ¢, 9, ¥ satisfy

£q¢ = Ml(PO‘>Pa¢ in (07 1)7
¢ (0) = limy—y; ¢(t) =0,

L0 = (Ag_l - 1) (pm + 2pwo + ¢~ )V + pad™ — ppI~, in (0,1),
9 (0) = limy_;, 9(t) = 0,

{ﬁqw = (Aa —1) (om +2pw0 +q7) + pav — pBy~, in (0,1),
W (0) = limy_1 P(t) = 0.

Let (ac]);j], (yj)gzgl_l and (yj)izgl be respectively the sequences of zeros of ¢, ¥

and . Thus, if )‘;rl—l <1 then

()
p

(X;zq - 1) (pm +2pwo +q7) + pa < par < pa = puy (por) pa

and we obtain from Lemma 8 that in each interval (y2;,92j41), j = 0,...,0 =1, ¢
admits a zero. This contradicts ¢ € 5.
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Similarly, if X2_l <1 then

(X;Z - 1) (pm + 2pwo + ¢~ ) + pa < pu (per) pex

and we obtain from Lemma 8 that in each interval (y2j41,%2j42), j =0,...,0 — 1, ¢
admits a zero. This contradicts ¢ € 5].

Suppose that at =0, 1 (xo) > 0 for some [ > 1 and xo € I'" and let ¢, 9, ¥ be
respectively the eigenfunctions associated respectively with p;(xo), )\;l_l and Ay
Thus ¢, ¥, ¥ satisfy

['q¢ = HZ(XO)XO¢ in (07 1))
¢ (0) = limy—,1 ¢(t) =0,
L0 = (X;H . 1) (pm* + 2pwo + ¢~ )9 + padt — pBY~, in (0, 1),
¥ (0) = limy—,1 9(t) = 0,
{ﬁqw = (Aa —1) (om +2pw0 +47) + pav* — pBy~, in (0,1),
¥ (0) = limy_,1 ¥ (t) = 0.
Let (ajj)gilo, (yj);:igl_l and (yj)gigl be respectively the sequences of zeros of ¢, 9
and ¢. Thus, if \j;_, <1 then

- - (a
(A;_l—l - 1) (pm +2pwo + ¢~ ) + pa < pa < 'ué),oa = (pa) pa

and we obtain from Lemma 8 that in each interval (y2;,42j41), j = 0,...,0 =1, ¢
admits a zero. This contradicts ¢ € S;.
Similarly, if A5; <1 then

(XZZ - 1) (pm + 2pwo + ¢ ) + pa < i (par) pa

and we obtain from Lemma 8 that in each interval (y2j41,%2j42), j =0,...,0 =1, ¢
admits a zero. This contradicts ¢ € Sj.

Lemma 22. Let (my) be a sequence in T such that limy, s« (infycpo 1) man (t) =
+oo. Then for all g € Q and k > 1, limy,—y4 o0 pig; (My) = 0.

Proof. For arbitrary A > 0, there is ng > 1 such that m,, > A for all n > n 4. Thus,
we obtain by means of Assertion 1 in Corollary 15 that for all k > 1 and n > n4,

ik ()| < e (A)] = ([ (V)] /A)

proving that lim,, oo g (my,) = 0.
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Lemma 23. Assume that ¢ € Qy and let u be a nontrivial solution to the bup (21),
then either u € Si for some k > 1 and v = +,— or u has an infinite monotone
sequence of simple zeros.

Proof. We distinguish two cases:

i) u has a finite number of zeros (z;)’ L

;207 in this case we have for all j, 0 < j < [-1,

[u(@®) = 0%, 2,0, (1) sup fu(@)] in [z, 2j41]
tG[Zj,Zj+1]

leading to

u(t)

t—Zj

> sup  |u(t)] /¥y(1) for ¢t near z; and

t€lzj,25+1]
t
]““ > sup [u()]/Ty(L).
t=zjt1 t€lzj,zj+1]

Passing to the limits we obtain that |u/(z;)| > 0 and |«'(2;j41)| > 0. This proves that
all zeros of u are simple and u € S} for some v = + or —.

ii) v has an infinite number of zeros, in this case there is z, € [0, 1] such that
u(z¢) = u/(2z¢) = 0. We claim that there is a monotone sequence of simple zeros (t,)
such that lim ¢, = z.. Indeed, if this fails then there is an interval [a, b] & [0, 1] such
that u =0 in [a,b] and z, € [a,b]. Set then

ty =sup{t>b:u(s) =0 forall s €bt]},
t— =inf{t <a:u(s)=0forall s€[ta]}.

Since w is a nontrivial solution, we have t_ > 0 or t4 < 1. Without loss of generality,
suppose that t; <1 and u > 0 in (t4,t,) where t, = sup {t > t4 : u(t) > 0}. In one

hand, we have
t
u'(ty) = lim u(®)
150, Tt

In the other, we obtain from Lemma 3 the contradiction

=0.

u'(ty) = lim tu(t) > (tesup u(t)/\I/q(l)> > 0.

[t+ ,t*]

This proves that there is a monotone sequence of zeros (t,) of u and the simplicity
of ,, is obtained again by means of Lemma 3. This achieves the proof.

The following lemma is a adapted version of Corduneanu compactness criterion:
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Lemma 24. A nonempty bounded subset § is relatively compact in W if

(a) Q is locally equicontinuous on [0,1), that is, equicontinuous on every compact
interval of [0,1) and

(b) Q is equiconvergent at 1, that is, given € > 0, there corresponds T(e) € (0,1)
such that |x(t)| < € for any t > T(e) and x € ).

4.3. Proofs of Theorems 16 and 17

4.3.1. An associated bifurcation bvp

Consider the bvp

Lau = i + uf(t,u) in (0,1),
{ u(0) = limy; u(t) = 0, (42)

where p is real parameter.

By a solution to the bvp (42), we mean a pair (u,u) € R x W? satisfying the
differential equation in the bvp (42). Notice that u € W? is a solution to the bvp
(21) if and only if (1,u) is a solution to the bvp (42). For this reason, we will
study the bifurcation diagram of the bvp (42) and by means of Rabinowitz’s global
bifurcation theory, we will prove that the set of solutions to the bvp (42) consists
in an infinity of unbounded components, each branching from a point on the line
R x {0} joining a point on R x {oc}. Obviously, each component having the starting
point and the arrival point oppositely located relatively to 1, carries a solution of
the bvp (21) and main results of this section will be proved once we compute the
number of such components.

Lemma 25. From each p; bifurcate two unbounded components of nontrivial solu-
tions to the bvp (42) C;r and ¢, , such that ¢ C R x S

Proof. 1t follows from Lemma 5 that solutions to the bvp (42) are those satisfying
tohe fixed point equation
u = pLgmu+ To(u). (43)

In order to use the global bifurcation theory, let us prove that all characteristic
values of Lz 7 are of algebraic multiplicity one. To this aim let u € N ((I — ﬁkL;Lm)Q)
and set v = u — fixLgmu, then v € N(I — jixLg ) = Rey and u — fip Lg mu = néy,
for some 1 € R. In another way, v satisfies the bvp

—v" 4+ qu = pxmv — nmey, in (0,1)
u(0) = limy_; u(t) = 0.
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Multiplying the differential equation in the above bvp by ¢, and integrating on (0, 1)
we obtain

1
i [ ekt =0,
0

leading to 7 = 0 and u = i Liu € Roy.
Now, we need to prove that To(u) = o(||u||) near 0. Indeed, let (u,) C W with
lim ||, || = 0, we have

|Tgun(t)] /G (t, s) )fsun ds <G/‘fsun ‘ds

[unl

We have from Hypothesis (22) that f(s,un(s)) — 0 as n — +oo for all s € (0,1).
Thus, we conclude by the Dominated convergence Theorem that Tp(u) = of||u||)
near 0. -

Let I, be the projection of W on Rep, W = {u € W : lyu =0} and for £ > 0, n €
(0,1) and v = + or —,

K¢y ={(p,u) e Rx W |p — pg| < & and vigu > nllull}.

Since Lemma 5 guarantees that the operators L and T are respectively compact
and completely continuous, we have from Theorem 1.40 and Theorem 1.25 in [21],
that from (g, 0) bifurcate two components C,j and ¢, of nontrivial solutions to
Equation (43) such that there is g9 > 0, ¢y N B(0,5) C K¢, for all ¢ < ¢y and if
u = adr +w € ¢ then |p — fig| = o (1), w = o (|a|) for o near 0.

We claim that there is 6 > 0 such that (§ N B(0,¢) C R x SY; for all ¢ < 6.
Indeed, let (pn,un),~; C ¢ be such that lim (s, u,) = (fix, 0), we have from Hy-
pothesis (22) that f(s,u,(s)) — m, that is lim p, f(s, un(s)) = ppm(s) and Lemma
8 guarantees that there is ng > 1 such that u, € Si for all n > ng. Moreover, if
Up = Q@) +wy then lim 52 = ¢y, in E proving that vuy,(t) > 0 for ¢ in a right neigh-
borhood of 0 and vu/,(0) <0 (otherwise, if u/,(0) then the existence and uniqueness
result for ODEs leads to u,, = 0).

Also, if (ps,us) € ¢ then for all sequence (fin,un),~; C ¢ be such that
m (i, Un) = (fs, Us ), we have lim pu, £ (8, un(s)) = psf(s,u«(s)) in E and Lemma
8 guarantees existence of ng > 1 such that u,, € Sy for all n > ng. This shows that
¢¢ C R x S¢ and ¢} is unbounded in R x W. The lemma is proved.

4.3.2. Proof of Theorem 16

Step 1. In this step we prove that for all [ > 1 and v = + or —, the projection
of the component (7 on the real axis is bounded. Since the nonlinearity f satisfies
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Hypothesis (22), there is v € Tt be such that
—y(t) < f(t,u) < (t) for all t € [0,1] and u € R.

Let for kK = 4 or —, Yy, € S} be the eigenfunction associated with sy, .. = (g —
p(m + kv),m) and (pu,u) € (5. It follows from Lemma 6 and Lemma 7 that there
exist two intervals (&1,71) and (£2,72) where wi)y, . > 0 and such that

m M
0 > i Y4 Lqu —ulgy 4 = /g (10— pre, 1) Mabg w4 (f(s,u) + ) utp +
1 1

m
> (p- ) [ suds
1

2 2
I L /5 (1= o) it + (f (1) ) wdy, ) ds
2

< (b= pe-) [ mugy—ds.
&2

The above inequalities lead to pg + < p < g, —.
Step 2. In this step we prove that for all [ > 1 and v = + or —, the component
¢/ rejoins the point (A}, 00). Notice that (43) is equivalent to

u::uLmu—kLa_%I+u——Lgfml_uﬁ—fxu. (44)

We proove that K (uy,) = o(||un||) near oco. Indeed; from lemma (4) in (i) we have

1

(Tootin(®)] /tnll) < /0 Py (s)ds.

where

un(s) - ur(s) ~ u (s
Pu(s) = G | (5, un(5) 25 — i) U l8) | i) b))

[ [[un [[un|

Therefore, we have to prove that fol P,(s)ds — 0 as n — oo.
We distinguish the following three cases:
i) limu,(s) = +oo: In this case, from (22) we obtain

Pu(s) < G4l f(s,un(s)) —a(s)| = 0 asn — 400

ii) limuy,(s) = —oo: in this case, from (22) we obtain

Po(s) < Gl f(s,un(s)) — B(s)| = 0 asn — +oo
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iii) limwu,(s) # £oo : in this case there may exist subsequences (u”i (s)) and
(un%(s)) such that (’U/nllc (s)) is bounded and lim U2 (s) = +oo. Arguing as in the
above two cases we obtain that lim P, ; (s) = 0 and we have from (22)

P,y (5) < Gg (F(tu(t) + () + B(5) ) (I (5)|/ g 1) =0 as k = +o00,

proving that T (uy) = o(|lun||) at co.
Now, let (fin,un) be sequence in ¢} with lim, 4 ||un]| = +oo then v, =
(un/||un||) satisfies

Up = fin L mvn + ngavn - L«;EU” + (Too(un) /|| unl]) (45)
with T (un) = o(||un||) at co. By the compactness of the operators Lz, Lg ., Ly &
we obtain from (45) existence of v, v_ € W such that for K = + or —, [Jv.| =1
and

_ + -
Vs = el mvs + Lq~’av,.C — L(IEU,.C

where p4+ = limsup u, and p— = liminf u,. We have from Lemma 10 that for
Kk =+ or —, v, € S with I < k. We claim that there is an integer n, > 1 such that
VU > 01n (27-1 + 9, 1) . Indeed, if there a subsequence (vy,) such that for all i > 1,
vp, has at a zero x,, € (21-1 + 0, 1) and v,, does not vanish in (x,,,1) then

pn = p(q = f (8, un) ;M ;) 2 pa(q — 73,1, Tn,)
Passing to the limit, we obtain from Theorem 9 the contradiction
+00 > e > lim py (¢ — 7, m, zp,) = +00.

From all the above, we obtain that for all n > ny, v,, belongs to S/ and | = k.

Step 3. Notice that u € W' N C%([0,1),R) is a solution to the bvp (21) if
and only if (1,u) is a solution to the bvp (42). This means that any component ¢}
having the starting point (fg,0) and the arrival point (XZ, o0), oppositely located
relatively to 1, carries a solution of the bvp (21). Therefore, we have to compute
in each of the cases stated in Theorem 16 the number of such components. To be
brief, we present only the proofs of Assertions 1 and 3.

Suppose that there is two integers ¢ and j such that ¢ > j > 1 and max (u; (o), i (8)) <

p < pj(m). We have then from Assertion 1 in Lemma 19 and Assertion 1 in Lemma
21 that p1; > 1 and X;’ < 1. Therefore, for all integers | € {j,..i} and v = + or —,
the component ¢/ crosses the hyperplane {1} x W.

Now, Suppose that there is two integers ¢ and j such that ¢ > j > 1, with
i >2(j—1) and p;(m) < p < pj(B). We have then from Assertion 1 in Lemma 19
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and Assertion 2 in Lemma 20 that ; < 1, X2_j71 > 1 and X;rj > 1. Therefore, for all

integers [ € {2j —1,...,4}, the component (;” crosses the hyperplane {1} x W and
for all integers [ € {24, ..i}, the component C;r crosses the hyperplane {1} x W.

Fig. B: pi(p) < p < pj(m™)
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21 12 Agic1 Aj Al

4.3.3. Proof of Theorem 17

Step 1. In this step we prove that for all [ > 1 and v = + or —, the projection
of the component ¢/ on the real axis is upper bounded . Since the nonlinearity f
satisfies Hypothesis (23), there is v € It be such that

f(t,u) > —~(¢t) for all t € [0,1] and u € R.
Because the nonlinearity f satisfies Hypothesis (23) there is v € '™ such that
f(t,u) > —~(t) for all t € [0,1] and u € R.

Fix k and v and let us prove first that if (4, u) € ¢f then u < pp — = pr(q — p(m —
7v),m). To this aim, let ¢, € S} be the eigenfunction associated with py, —, it follows
from Lemma 6 and Lemma 7 that there exists an interval (£,n) where ut; > 0 and
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we have
n n _
0 < / L — ulapy, = / (1 — o) oy, + (£ (5,) — ) wthe) ds
13 3
< (p— pg,-) /77 muds
- C e

leading to pu < g, —.

Step 2. In this step we prove that for all [ > 1 and v = + or —, the component
¢/ rejoins the point (—o0o,00). Thus, we have to prove that for all p < juy —, there is
a positive constant M} such that

dc/ N ([M,Mk,—] X W) C [Mnuk,—] X E(OaMl::/)

On the contrary, suppose that this fails and there is a sequence (,un,un)n21 in
¢t N ([py pi,—] x W) such that limy_, ||ty || = +00. That is for all n > 1

Liun = up (,un + f(t,un)> in (0,1)
un (0) = limy—y1 up(t) =0,

from which we read that for all n > 1

1, wn) = (46)

where wy, (t) = pn + f (¢, un (1))

j
Let (Z§L>j:0 be the sequence of zeros of uy,, I7 = {z” z}z] , Pl = SUPye e lun (1) =

j—1 J
un (55)

limp? = +oo. We claim that there is a, € (0,1) such that if (ns) is a sequence

with y;? € Ij”. Because limy, o ||un|| = 400, there is j, such that

of integers such that limg_,o p;‘: = 400 then y;:lf € (0,a4). Indeed, if for any
sequence (ls) of integers such that lims p?: = +o0o we have limg y?: =1,
then (uy,) is bounded on any interval [0,a] C [0, 1) . Therefore, from the equation

Un(t) = /01 G (t, 5) un(s) (un + F (s, un (s))) ds

we conclude that (u,,) converges uniformly to v € W in all intervals [0,a] C [0, 1)
and

1 ~
u(t) = /0 G5 (t,s)u(s)f (s,un (s))ds.

154



A. Benmezai, S. Mellal and J. Henderson — Sturm-Liouville bvps ...

Since for all t € [0,1)

1
fun(£) — u(#)| < /0 G (5,5) |un(5)F (5, n (5)) — u(s)F (5, (5))| ds,

we obtain by means of the Lebesgue dominated convergence theorem that w, — u
in W, leading to the contradiction ||u|| = limy,— o ||Jun| = +o0.

Set g« = Supyc(o,q,] ¢(t) and let A, > 0 be such that f(t,u) > g, for all ¢ € [0, a]
and |u| > A.. We prove now, that if I} C [0,a.] then limp] = +oco. On the
contrary suppose that lim p} _, =% 400 and lim P} +1 7 +00, that is uy is bounded in

I3 _UI} . and let @ be such that max (p;?n_l, p?nH) <w. Leto} € (2} _q, yjnn)

J
and ,B;Ln € (y;“n,z;ln> be such that |u, (a?ﬂ)‘ =

Uy, (BZ)’ = A,. Thus, we have
—tpy (8) up (£) = ui; () (f (¢ un(t)) — q(t) > (8) (g« — q(t)) > 0 in (a}, 57 )

iy (07, )] = suPse(ar 4o ) I (8)] and

in'Yin

leading to

wn (85,)] = 5P, ) 1 O

i n n n
[ Zjn Yjn+1 Fjn+1

n
Fig. D Pin+1
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On the one hand, we have

lim ’u; (o )}

n lim sup |uy, ()| | = lim |uj, (6},)]

te (a?n ’y;Ln )

= lim sup  |up, ()] | = +oc.
te (y?n’ﬁ;nn)

Indeed, if for instance u/, is bounded by a constant A in (a;‘n, y;ln> then
n y?" !
i < A, +/ lur,(s)] ds < A, + A4,
Y,
contradicting lim p7 = +o0.

On the other hand, we have the contradiction

n

(@) = | [ ) (7 5 unls) — a(5)) ds| < ma (2, Aq) (g +0) < oo
i () = | [ o) 5 (5000 (9) = ) s < max (s, A7) (0. + 0) <
.

where 0 = sup{|f(s,u)|:s€[0,1] and u € [~ max (w, A7), max (w, Ar)|}. This
shows that all bumps of w,, contained in [0, a,] are unbounded.

At this stage, for all n > 1 there is an interval I} = [zﬁrl, z]”n] C [0, ay] such

that 27 — 27 | > 9 and Lemma 3 leads to |u,(t)] > p% for all t € [’y}-”‘n, 5;2} where

2 n 1 A
n __.n In In— no_ n In In—
/y]n - Zjn_l + 4 and 5]71 - Z]n :

Set v9 = sup yjnn and 09 = inf 7}1 and notice that dg — g = inf (5}1 — 7?71) > %
Because of .
in ~
un(t) = G (2}, 1,27, t,5) u(s)nf (s, un(s)) ds,
-1

we obtain from Lemma 3 that

1 _n no_ 1 _n no_
min (t 2515 %, t) . min (t 2515 %, t)

lun(t)] > Py >
" V0 (z]”n> ! 2% (1)

Py, — +00
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for all ¢ € [7p, do] . Thus, we obtain from Lemma 13 and (46) that

k(G W, [0, 60]) > pk(q, wn) = 1. (47)

Let A > pu,(d, 1, [v0, 00]), there is ng > 1 such that wy, (£) = pn + f (£, un(t)) > A
for all n > n4 and t € [y, do] . Hence, we obtain by Assertion 1 in Corollary 15 the
contradiction

~ ~ ~717 75
1< Mk(Q7wn> [70750]) < }uk((b A7 [70750]) = /W < 1.

14 Hj+1

S
/
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Step 3. At this stage, we have only to compute components that cross the
hyperplane p = 1. Assume that Hypothesis (33) holds, then we have from Assertion
2 in Lemma 19 that p; > 1 for all £ > j. Since for all k > 1 and v = + the component
(¢ reachs (—00,00), ¢} crosses the hyperplane = 1 for all & > j. Thus, the bvp
(21) admits for all k > j a solution in S;" and in S, . The case where m™ = 0 and
1 (x0) > 0 for some xo € I'" is obtained by means of Assertion 3 in Lemma 19.

The proof of Theorem 17 is complete.

4.4. Proof of Theorem 18

Set forn > 1

and consider the bvp

{ "+ qu = pufu(t,u) in (0,1) (48)

We have then

lim fn(ta u) = (t)v UEEHOO fn(ta u) =p (t) and ig%fn(tau) = f(tv %) in E.

U——+00
To be brief, we present the proof of Assertion 1, the other Assertions are checked
similarly. Because of lim, o (infte[o,l] ft, %)) = +o0o, for all [ > 1 there exists

n; > 1 such that for all n > ny, (g, f(t, L) <p.

Fix k > j and v = 4+ or —. For all n > nj Assertion 3 in Theorem 16 guarantees
existence of u, € S{ solution to the bvp (48).

Let wg be that in Remark 1,

g=q"+2pwo , fo(t,u)=p(falt,u)+2wo) +q~

and observe that v is a solution to (48) if and only if v is a solution to the bvp

—u" 4 Gu = puf,(t,u) in (0,1)
{ u(0) = limy 1 u(t) = 0. (49)

We claim that there is a positive constant mj such that [ju,| > m}. To the
contrary, suppose that (u,) admits a subsequence (us) such that limus = 0 in E
and let A > ug(q,1). There is y4 > 0 such that for all v € R, |u| < y4 implies
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inf,ei0,1) fr (t,us) > A and there is s 4 such that [lus|| < ya for all s > s4. Thus, for
all s > sup(1/v4,54), infyeo 1) f, (£, un(t)) > A and this leads to the contradiction

1= (@, £, (t,un(t)) < ur(g, A) = Nk(;]l’l) <1

We prove now that there is positive constant M} such that |u,| < M}. To the
contrary, suppose that there is a subsequence (u,) of (u,) such that lim [|u,| = co.
Arguing as in Step 2 in the proof of Theorem 17, we obtain that v, = u,/ ||u,||
converges, up to a subsequence, to v € Sf satisfying

Lqv = pavt — pfv~ in (0,1)
v(0) = limy_; v(t) = 0.

Let ¢ € S} be the eigenfunction associated with py (pv) , that is ¢ satisfies

{ Lod = p, (p) pib in (0,1)
$(0) = limy_,1 ¢(t) = 0.

Let (x]);j) and (yj);jo be respectively the sequences of zeros of v and ¢. We dis-
tinguish then the following two cases:
i) 1 < yp: in this case we have the contradiction:

1
0 < / vLyp — Ly

0

< / (o) oo — (pav™ = pBv~) ¢

0

= / 1 (e (p)p — @) pdT vt + (i (p)pp — B) pp~ v~ < 0.

0

ii) y1 < x1: in this case Lemma 6 guarantees existence of two integers m,n
having the same parity such that y,, < xp, < p+1 < Yym+1 and Lemma 7 leads to
the contradiction:

Tn41
0 < / 0Ly — LGV

IN

/ " p () podv — (pav™ — pBuT) ¢

- / " (o) o — ) pdtoT + (o)t — B) péu™ < 0.
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At this stage by means of Theorem 24 we prove that the sequence (u,,) is rela-
tively compact. Let [0,a] C [0,1), t1,t2 € [0,a] be such that ¢; < t5 and
CY = sup{‘uf(t,u)} :t€10,1] and u € [—M;;,M;C’]} . We have

|Un(t2) Un(t )< fo |Gg(t2, s) — Ga(t175)|d5 < C”(!‘I) (t2) t2 I
+ [, [@g (t2) E(S) Oz (s) ¥ (tl)\dSJr Vg (t2) — Vg (0 |ft2
<cv () 0)] Jy Wq(s) ds + 205 (a) + W (a) f, @ ds+) it — tl\

This proves that (uy,) is equicontinuous on any interval [0, a] contained in [0, 1).
By the mean value theorem, for all n > 1 and all ¢t € [0,1) there is ¢, € (¢,1)
such that

g

S)Un (5) ?n (57 un(s)) ds

<cy.

A

0

This proves that the sequence (u,,) is equiconvergent at to =1.

Therefore, limu,, = u (up to a subsequence) and u(t fo (s,u(s))ds
proving that u is a solution to the bvp (21). Furthermore combmmg Lemma 23
with Lemma 10 we see that u € S;. This ends the proof.

4.5. Separable variable case

Consider the case of the bvp (21) where the nonlinearity f is a separable variables
function, namely the case where the bvp (21) takes the form

Lou = pxeuh(u), t € (0,1),
{ u(0) = limy_; u(t) = 0, (50)

where 5 € ' and h: R\ {0} — R is a continuous function satisfying

lim h(u) = hg, lim h(u)=hy, lim h(u)=h_. (51)

u—0 u—>+00 U—>—00
We obtain from Theorems 16, 17 and 18 the following corollary:

Corollary 26. Assume that (51) holds.

1. Let i,j be two integers such that i > j > 1. The bup (50) admits in each
of S]J-r, LS S7ss....S; a solution if one of the following Hypotheses (52),

1

(53), (54) and (55) holds true.

(52)

{ ho,hy,h_ € (0,+00) and
(1(q; )/ min(hy, ho)) < p < (piq, >)/ho) ,
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ho <0, hy,h_ € (07 —I—OO), (Mi(% %)/min(h+vh*)) <p (53)
and 11;(¢, xo0) > 0 for some xo € I'T,
{ ho,hy,h_ € (0,+00) and (54)
(ki(g, 20)/ho) < p < (nj(g, )/ max(hy, h-)),
hO < 07 h+a h_ € (07 +OO)7 (Mj(Q7 %)/max(h+, h‘—)) >p (55)
and 11;(q, xo0) > 0 for some xo € I'"".

2. Let i,j be two integers such that i > j > 1 and i > 2(j — 1). The bup (50)
admits in each of S;j, ey Sj, ng_l, ,-.-,8; a solution if one of the following
Hypotheses (56), (57) holds true.

ho,h— € (0,+00) and
(o) 9 asta, 0, %6)
{ hﬂ >0, h- < 0, (Mi(q’ %)/ho) <p (57)
and 15(g, xXo0) > 0 for some xo € I'".

3. Let i,j be two integers such that i > j > 1 and i > 2(j5 — 1). The bvp (50)
admits in each of S;j_l, e Sj, SQ_j, y--,8; a solution if one of the following
Hypotheses (58), (59) holds true.

{ ho, h4 € (0,400) and (58)
hU > 07 h+ < 07 (/’L’L(Q7 %)/h0> <p (59)
and (g, xo0) > 0 for some xo € T'*.

4. The bup (50) admits for all k > j a solution in each of S,j and S, if one of
the following Hypotheses (60), (61), (62) and (63) holds true.

{ ho >0, h— =hy =+00 and (60)
(15(g, %)/ ho) > p,
ho <0, ho = hy =+00 and (61)
145(q, x0) > 0 for some xo € T'Y,
{ h_,hy € (0,+00), hyg =+o0 and (62)
(:uj(qa z)/max (h‘—ah—l-)) > P
h_,hy <0, hg = +00 and (63)
145(q, x0) > 0 for some xo € T'Y,

161



A. Benmezai, S. Mellal and J. Henderson — Sturm-Liouville bvps ...

4.6.
. Under one of the Hypotheses (22), (23) and (24), the set of solutions to the

The bup (50) admits a solution in Slj for all k > 2j and a solution in S, for
all k > 2j — 1, if one of the following Hypotheses (64), (65) holds true.

h- >0, ho =+o0 and
7 64
{ (1j(q, %) /h=) > p, (64)
h_ <0, hg =+o0 and (65)
#j(Q»XO) > 0 for some xg € I”r,

The bup (50) admits a solution in S; for all k > 2j — 1 and a solution in S,
for all k > 23, if one of the following Hypotheses (66), (67) holds true.

{ hy >0, hg =400 and (66)
(kj(q, )/ hs) > p,
hy <0, hg = +00 and (67)
wi(q, x0) > 0 for some xo € T'*.

Comments

bvp (21) is contained in Up>1,=+S5}. Indeed, we have seen above that u is a
solution to the bvp (21) if and only if u satisfies

Liu=uf(t,u)in (0,1)
{ w(0) = limy_,1 u(t) =0, (68)

where ¢ = q + w1, f(t,u) = f(t,u) + w; and w; € It is that in Remark 1.
We read from (68) that u is a solution to bvp

{ Lzv =wvf(t,u)in (0,1)
v(0) = limy_y v(t) =0,

that is (?j, f(t, u)) = 1 for some [ > 1 and the associated eigenfunction
ueSy.

. Let u be a solution to the bvp (21), according to the above comment, there is

k > 1 such that u € Si. Let (zj);zg be the sequence and t, € (0,1) be such
that ¢(t) > 0 for all ¢ > t,. Set t* = max(ty, zx—1) and let y; € (z5—1,1) be
such that «/(y;) = 0. We have then for all ¢t > ¢*

—u’(t)—i—/ q(s)u(s)ds:/ u(s) f(s,u(s))ds (69)

Yj Yj
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leading to

= |/ (t)| + / lu(s) f(s,u(s))|ds < oc.

We deduce from the above inequality for both the cases u > 0 in (z;_1,1) and
u < 0in (zx_1,1) that

/ lq(s)u(s)ds — lim /y :q(s)u(s)ds < .

;i t——1

This proves that if u is a solution to the bvp (21) then fol q(s)u(s)ds converges.
Therefore, we obtain from (69) that

t—1 t—1

limu/(t) = lim (/ q(s)u(s)ds —/ u(s)f(s,u(s))ds)

3. Let ¢ € @, notice that if for some m € T'" and | > 1 (g, m) = 0, then
wi(q,x) = 0 for all x € I'". Therefore, if p;(q,m) > 0 (resp. < 0) for some
m € I'" and [ > 1 then (g, x) > 0 (resp. < 0) for all x € I'". Indeed, if
wi(q, x0) > 0 and (g, x1) < 0 for some xo,x1 € I't and I > 1, then the
continuity of the mapping

wi(g,) :{(1—=r)xo+rxi:re0,1]} =R

leads to the existence of rg € (0,1) such that p;(q, (1 —79) xo+70x1) = 0, then
to the contradiction y;(q,x) = 0 for all x € I'".

4. Let ¢ € Q" and xo € I'". The operator Ly ,, is then positive and we have for

all 1 >1
1

T(Lqm)

Therefore, ¢ € QT is a particular situation where Assertion 3 in Lemmas 19
and 20 and Assertions 2 and 4 in Lemma 21 are satisfied.

> 0.

(g, xo0) > (g, xo) =

Acknowledgements. The authors are thankful to the anonymous referee for
his careful reading of the manuscript, which led to a substantial improvement of the
original manuscript. .

163



A. Benmezai, S. Mellal and J. Henderson — Sturm-Liouville bvps ...

REFERENCES

[1] A. Benmezal, W. Esserhane and J. Henderson, Nodal solution for singular sec-
ond order boundary value problems, Electron. J. Differential Equations 2014 (2014),
No. 156, 1-39.

[2] A. Benmezai W. Esserhane, J. Henderson, Sturm-Liouville BVPs with
caratheodory monlinearities, Electron. J. Differential Equations, Vol. 2016 (2016),
No. 298, pp. 1-49.

[3] A. Benmezal, Fized point theorems in cones under local conditions, Fixed Point
Theory, 18 (2017), No. 1, 107-126.

[4] H. Berestycki, On some non-linear Sturm-Liouville boundary value problems, J.
Differential Equations 26 (1977), 375-390.

[5] H. Berestycki, Le nombre de solution de certains problémes semi-linéaires
élliptiques, J. Functional Analysis 40 (1981), 1-29.

[6] P. A. Binding and B. P. Rynne, Half-eigenvalues of periodic Sturm-Liouville
problems, J. Differential Equations 206 (2004), No. 2, 280-305.

[7] Y. Cui, J. Sun and Y. Zou, Global bifurcation and multiple results for Sturm-
Liouville boundary value problems, J. Comput. Appl. Math. 235 (2011), 2185-2192.

[8] G. Dai, R. Ma and J. Xu, Global bifurcation and nodal solutions of N-
dimensional p-Lapalcian in unit ball, Appl. Anal. 92 (2013), No. 7, 1345-1356.

[9] F. Genoud, Bifurcation from infinity for an asymptotically linear boundary value
problem on the half line, Nonlinear Anal. 74 (2011), 4533-4543.

[10] F. Genoud and B. P. Rynne, Half eigenvalues and the Fucik spectrum of mul-
tipoint boundary value problems, J. Differential Equations 252, No. 9 (2012), 5076-
5095.

[11] F. Genoud and B. P. Rynne, Second order multi-point problems with variable
coefficients, Nonlinear Anal. 74, No. 18 (2011), 7269-7284.

[12] R. Ma and X. Han, Existence of nodal solutions of nonlinear eigenvalue prob-
lems with indefinite weight function, Nonlinear Anal. 71 (2009), 2119-2125.

[13] R. Ma and D. O’'Regan, Nodal solutions for second order m-point boundary
value problems with nonlinearities across several eigenvalues, Nonlinear Anal. 64
(2006), 1562-1577.

[14] R. Ma and B. Thompson, A note on bifurcation from an interval, Nonlinear
Anal. 62 (2005), 743-749.

[15] R. Ma and B. Thompson, Multiplicity results for second-order two point bound-
ary value problems with superlinear or sublinear nonlinearities, J. Math. Anal. Appl.
303 (2005), 726-735.

164



A. Benmezai, S. Mellal and J. Henderson — Sturm-Liouville bvps ...

[16] R. Ma and B. Thompson, Multiplicity results for second-order two point bound-
ary value problems with nonlinearities across several eigenvalues, Appl. Math. Lett.
18 (2005), 587-595.

[17] R. Ma and B. Thompson, Nodal solutions for a nonlinear eigenvalue problems,
Nonlinear Anal. 59 (2004), 707-718.

[18] R. Ma and G. Dai, Global bifurcation and nodal solutions for a Sturm-Liouville
problem with a nonsmooth nonlinearity, J. Funct. Anal. 265 (2013), 1443-1459.

[19] Y. Naito and S. Tanaka, On the existence of multiple solutions of the boundary
value problem for monlinear second order differential equations, Nonlinear Anal. 56
(2004), 919-935.

[20] P. H. Rabinowitz, Nonlinear Sturm-Liouville boundary value problems for sec-
ond order ordinary differential equations, Comm. Pure Appl. Math. 23 (1970), 939-
962.

[21] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J.
Functional Anal. 7 (1971), 487-513.

[22] P. H. Rabinowitz, On bifurcation from infinity, J. Differential Equations 14
(1973), 462-475.

[23] B. P. Rynne, Linear second order problems with Sturm-Liouville-type multipoint
boundary conditions, Electron. J. Differential Equations 2012 (2012), No. 146, 21 pp.
[24] B. P. Rynne, Second order, three point, boundary value problem with jumping
nonlinearities, Nonlinear Anal. 68 (2008), 3294-3306.

[25] B. P. Rynne, Spectral properties and nodal solutions for second-order m-point
boundary value problems, Nonlinear Anal. 67, No. 12 (2007), 3318-3327.

[26] B. P. Rynne, Half-eigenvalues of self adjoint, 2mth order differential operators
and semilinear problems with jumping nonlinearities, Differential Integral Equations
14 (2001), No. 9, 1129-1152.

[27] B. P. Rynne, The Fucik spectrum of general Sturm-Liouville problems, J. Dif-
ferential Equations 161 (2000), 87-109.

165



A. Benmezai, S. Mellal and J. Henderson — Sturm-Liouville bvps ...

Abdelhamid Benmezai

Higher National School of Mathematics,
Algiers, Algeria

email: aehbenmezai@gmail.com

Salima Mellal

Faculty of Mathematics, USTHB,
Algiers, Algeria

email: salimamellal@yahoo.fr

Johnny Henderson

Department of Mathematics,

Baylor University, Waco,

Texas 76798-7328 USA

email: johnny_henderson@baylor.edu

166



	Introduction
	Preliminaries
	General setting
	The Green's function and fixed point formulation
	Comparison results
	The positive eigenvalue

	The half-eigenvalue problem
	Nodal solutions to the nonlinear bvp
	Main results
	Related Lemmas
	Proofs of Theorems 16 and 17
	An associated bifurcation bvp
	Proof of Theorem 16
	Proof of Theorem 17

	Proof of Theorem 18
	Separable variable case
	Comments


