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Abstract. In this paper, we study LN-translation surfaces with zero mean
curvature and zero Gaussian curvature. Further, we investigate the computation
of parametrizations of convolution surfaces of paraboloids and translation surfaces.
In addition, we give necessary and sufficient conditions for a convolution surface of
LN-translation surfaces to become flat and minimal in Euclidean 3-space.
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1. Introduction

A surface that arises when a curve α(u) is translated over another curve β(v), is
called a translation surface. A translation surface can be defined as the sum of the
two generating curves α(u) and β(v).Therefore, translation surfaces are made up
of quadrilateral, that is, four sided, facets. Because of this property, translation
surfaces are used in architecture to design and construct free-form glass roofing
structures. A translation surface in a Euclidean 3-space E3 formed by translating two
curves lying in orthogonal planes is the graph of a function z = r (u, v) = f(u)+g(v),
where f(u) and g(v) are smooth functions on some interval of R ([1]).

In 1835, H. F. Scherk studied translation surfaces in E3 defined as graph of the
function z(u, v) = f(u) + g(v) and he proved that, besides the planes, the only
minimal translation surfaces are the surfaces given by

z(u, v) =
1

a
log

∣∣∣∣cos(au)

cos(av)

∣∣∣∣ =
1

a
log |cos(au)| − 1

a
log |cos(av)| ,

where a is a non-zero constant. These surfaces are now referred as Scherk’s minimal
surfaces.
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LN-surfaces, which were studied in ([5]) have sufficient flexibility to model smooth
surfaces without parabolic points. Peternell and Odehnal generalized the concept of
LN-surfaces to R4 ([9]). Bulca calculated the Gaussian, normal and mean curvatures
of LN- surfaces in E4, Further, she pointed out the flat and minimal points of the
surfaces ([3]).

The computation of convolution curves-surfaces and Minkowski sums of objects
occurs in various areas, like computer graphics, computational geometry and motion
planning. Sampoli, Peternell and Jüttler showed that even the convolution surface of
an LN-surface and any rational surface admits rational parametrization ([8, 10,11]).
Aydöner and Arslan studied with the convolution surface Cof a paraboloid A ⊂ E3

and a parametric surface B ⊂ E3. They took some spacial surfaces for B such as,
surface of revolution, Monge patch and ruled surface and calculate the Gaussian
curvature of the convolution surface C. Further, they gave necessary and sufficient
conditions for a convolution surface C to become flat ([2]).

2. Preliminaries

Let E3 be a Euclidean 3-space with the scalar product given by

〈, 〉 = dx2 + dy2 + dz2

where (x, y, z) is a rectangular coordinate system of E3, In particular, the norm of
a vector V ∈ E3 is given by

‖V ‖ =
√
〈V, V 〉.

If V = (v1, v2, v3) and W = (y1, y2, y3) are arbitrary vectors in E3, the vector product
of V and W is given by

V ∧W = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1) .

Let S : Ψ := Ψ (u, v) be a surface in Euclidean 3-space. The normal vector field of
S is given by N =Ψu ∧Ψv and the unit normal vector field of S can be defined by

U =
Ψu ∧Ψv

‖Ψu ∧Ψv‖
.

The first fundamental form I of the surface S is

I = Edu2 + 2Fdudv +Gdv2,

with the coefficients

E = 〈Ψu,Ψu〉 , G = 〈Ψv,Ψv〉 , F = 〈Ψu,Ψv〉 .

14
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The second fundamental form II of the surface S is given by

II = Ldu2 + 2Mdudv +Ndv2,

with the coefficients

L = 〈Ψuu, U〉 , N = 〈Ψvv, U〉 ,M = 〈Ψuv, U〉 .

Under this parametrization of the surface S, the Gaussian curvature K and the
mean curvature H are given by

K =
eg − f2

EG− F 2
,

H =
Eg +Ge− 2Ff

2 (EG− F 2)
,

respectively ([7].

Definition 1. Consider a polynomial (or, more general, a rational) surface Ψ (u, v).
This surface is said to be an LN-surface, if its normal vectors admit a linear repre-
sentation of the form

N (u, v) = −→a u+
−→
b v +−→c ,

with certain constant coefficient vectors −→a ,
−→
b ,−→c ∈ R3. More precisely, it satisfies

the equations the equations

〈Ψu,N〉 = 〈Ψv,N〉 = 0. (2.1)

The equations (2.1) can be seen as linear constraints on the space of polynomial
or rational parametric surfaces.

Remark 1. If the three vectors −→a ,
−→
b ,−→c ∈ R3 are linearly dependent, then the

surface Ψ (u, v) describes a general cylinder, since the unit normals U are contained
in a great circle on the unit sphere. In the remainder of this paper we assume that
the three vectors are linearly independent. Without loss of generality we may then
assume that

−→a = (1, 0, 0) ,
−→
b = (0, 1, 0) ,−→c = (0, 0, 1) . (2.2)

i.e., N(u, v) = (u, v, 1). This situation can be achieved by a uniform scaling of R3,
a suitable choice of Cartesian coordinates, and a linear parameter transformation
u = u(u′, v′), v = v(u′, v′).
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Proposition 1. Under the assumptions of Remark , the tangent planes of an LN
surface have the equations

T (u, v) : r (u, v) = ux+ vy + z = 0, (2.3)

where f(u, v) = −Ψ(u, v)· N(u, v)is a polynomial or rational function, in the case of
a polynomial or rational LN surface, respectively. On the other hand,given a system
of tangent planes of the form (2.3) with a polynomial or rational function h(u, v),
the envelope surface

ΨL = (−zu,−zv,−z + uzu + vzv) (2.4)

is a polynomial or rational LN surface.

Remark 2. Due to (2.1), singular points of the envelope surface (2.4) are char-
acterized by zuuzvv − zuv = 0. In addition, the Gaussian curvature of the envelope
equals

K (u, v) =
1

(zuuzvv − zuv) (1 + u2 + v2)2
. (2.5)

Consequently, the algebraic curve zuuzvv − zuv = 0 in the (u, v)-parameter domain
separates elliptic (K > 0) and hyperbolic (K < 0) points on the LN surface.

Given two surfaces A and B in R3, their Minkowski sum A⊕B is defined to be
the set

A⊕B = {a+ b : a ∈ A, b ∈ B} ,

where a and b denote position vectors of arbitrary points in A and B. The convolu-
tion surface is defined to be

A+B = {a+ b : a ∈ A, b ∈ B, nA(a) ‖nB(b)} ,

where nA(a) and nB(b) are parallel surface normal vectors at the points a ∈ A and
b ∈ B.The convolution surface is often denoted by AFB. Since we are working with
parametrizations only it is more convenient to denote the convolution by A+B and
we call it also sum of A and B. In general, the computation of the convolution surface
A+B of two smooth surfaces A and B results in the following problem. Assume that
the surfaces A and B are parametrized by a(u, v) and b(s, t), respectively and that
the normal vectors are denoted by nA(u, v) and nB(s, t). The convolution surface
A+B is formed by the sums of vectors a, b whose normal vectors nA, nB are parallel.
Thus, we have to find parametrizations a (u(s, t), v(s, t)) = a(s, t) and b(s, t) of parts
of A and B over a common parameter domain of the st-plane with the property that
the normal vectors nA(s, t) and nB(s, t) at a and b are parallel. Let us point out
that in case of an arbitrary surface B there is no one-one correspondence between
points a ∈ A and b ∈ B with nA(a) ‖nB(b) .
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Now, we want to investigate parametrizations of the sum A+B of a paraboloid
A and a parametrized surface B. We assume that a coordinate system has been
chosen in a way that the paraboloid A is given by the equation

FA = z − x2 − cy2 = 0, c 6= 0.

This implies that A is representable by a(u, v) = (u, v, u2 + cv2) and it is either an
elliptic or a hyperbolic paraboloid depending on whether c > 0 or c < 0. The surface
B is assumed to admit a local parametrization b : (s, t) ∈ G ⊂ R2 → R3, which is
a smooth mapping. Two points a ∈ A and b ∈ B are corresponding if the normal
vectors nA(a) and nB(b) at a and b, respectively, are linearly dependent,

nA(a) = λnB(b), λ 6= 0. (2.6)

Then, a + b is a point of the convolution surface A + B. So, let nB(s, t) =
(n1, n2, n3)(s, t) be a normal vector of B, we rewrite condition (2.6) in coordinates
and obtain

(−2u,−2cv, 1) = λ (n1, n2, n3) (s, t).

In case n3(s, t) 6= 0 we have λ = 1
n3(s,t)

and

u(s, t) = − n1
2n3

(s, t), v(s, t) = − n2
2cn3

(s, t). (2.7)

The final representation of the sum A+B is

ΨC = (a+ b) (s, t) =

(
−n1
2n3

+ y1,
−n2
2cn3

+ y2,
1

4cn23

(
cn21 + n22

)
+ y3

)
(s, t). (2.8)

Also, the convolution surface A+B of an LN–surface has the reparameterization

ΨCL = (a+ b) (s, t) =

(
n1
n3

+ y1,
n2
n3

+ y2,
1

n23

(
n21 + cn22

)
+ y3

)
(s, t). (1)

See details in ([6, 8, 9, 10,11]).

3. LN-Translation Surfaces

In this chapter, we define the LN-translation surfaces in Euclidean 3-space. Consider
a surface in as a the graph of a function z = r(u, v) of two variables, which is itself
the sum of two functions f and g of one variable. Here, we restrict our topic to
regular surfaces Ψ. Thus, we can express in open form as

Ψ: z = f(u) + g(v). (2)
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A translation surface is defined by a patch

Ψ(u, v) = (u, v, f (u) + g (v)) . (3)

So, using (2.4) and (3.1), we can define the LN- translation surfaces defined by as

SL : ΨL(u, v) =
(
−f ′(u),−g′(v), uf ′(u) + vg′(v)− f(u)− g(v)

)
. (4)

The coefficients of the first and the second fundamental forms of the LN-translation
surface given by

EL =
(
1 + u2

)
f ′′

2
, GL =

(
1 + v2

)
g′′

2
, FL = uvf ′′g′′, (5)

eL =
1

g′′
√

1 + u2 + v2
, gL =

1

f ′′
√

1 + u2 + v2
, fL = 0.

Thus, we have the unit normal vector

UL =
1

f ′′g′′
√

1 + u2 + v2
(u, v, 1) . (6)

Proposition 2. Let SL be a LN−translation surface in Euclidean 3-space. Then
the Gaussian and the mean curvatures of SL can be given by

KL =
1

f ′′g′′
√

1 + u2 + v2
, (7)

HL =

(
1 + u2

)
f ′′

2
+
(
1 + v2

)
g′′

2

2f ′′2g′′2 (1 + u2 + v2)
3
2

,

respectively.

So we have the following result.

Corollary 1. Let SL be a LN -translation surface in Euclidean 3-space. Then there
is no flat LN -translation surface.

We assume that SL is minimal. Hence, the mean curvature is zero if and only
if (

1 + u2
)
f ′′

2
+
(
1 + v2

)
g′′

2
= 0. (8)

Then, the minimality condition (3.6) can be separated for the variables(
1 + u2

)
f ′′

2
= −

(
1 + v2

)
g′′

2
= m, (9)
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where m ∈ R.Solving this equation for f and g, we get

f(u) = c1 + c2u+m

(
u arctanu− 1

2
ln
∣∣1 + u2

∣∣) , (10)

g(v) = c5 + c6v −m
(
v arctan v − 1

2
ln
∣∣1 + v2

∣∣) ,
where ci,m ∈ R. Thus we have following theorem.

Theorem 2. A LN-translation surface SL is minimal in Euclidean 3-space if and
only if it is a part of the surface (3.3) with (3.9).

4. Convolution of translation surfaces

Assume that S is a the translation surface given by (3.2). So, using (2.8), the
convolution surface of a paraboloid and a translation surface has the parametrization

SC : ΨC =

(
1

2

(
2u+ f ′

)
,
2cv + g′

2c
,
4cf + 4cg + cf ′

2
+ g′

2

2c

)
. (11)

Proposition 3. Let SC be a convolution of translation surface Euclidean 3-space.
Then the Gaussian and the mean curvatures of SC can be given by

KC =
4cf ′′g′′

(2 + f ′′) (2c+ g′′)
(
1 + f ′2 + g′2

)2 , (12)

HC =
f ′′
(

2c+ 2cg′
2
)

+ g′′
(

2c+ 2cf ′
2
)

+ f ′′g′′
(

1 + c+ cf ′
2

+ g′
2
)

(2 + f ′′) (2c+ g′′)
(
1 + f ′2 + g′2

) 3
2

,

respectively.

We suppose that the convolution of translation surface given by (4.1) has zero
the Gaussian curvature. Therefore, either f ′′ = 0 or g′′ = 0 which implies that the
surface is flat.We assume that SC is minimal. Hence, the mean curvature is zero
if and only if

f ′′
(

2c+ 2cg′
2
)

+ g′′
(

2c+ 2cf ′
2
)

+ f ′′g′′
(
c+ cf ′

2
+ 1 + g′

2
)

= 0. (13)

The equation (4.3) turns out to be

f ′′
(

2c+ 2cg′
2
)

+
(

2c+ 2cf ′
2
)
g′′ + f ′′

(
c+ cf ′

2
)
g′′ + f ′′

(
1 + g′

2
)
g′′ = 0. (14)
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The expression (4.4) is analyzed with the method as in ([4]). We write

4∑
i=1

fi(u)gi(v) = 0,

where

f1 = f4 = f ′′, f2 = 2c+ 2cf ′
2
, f3 = f ′′

(
c+ cf ′

2
)
,

g1 = g3 = g′′, g2 = 2c+ 2cg′
2
, g4 =

(
1 + g′

2
)
g′′.

If f1 = f4 = f ′′ = 0, then we get f(u) = c1u+c2. Replacing f(u) in the equation
(4.4), we obtain g(v) = c3v + c4. If f2 = 0 or f3 = 0, then we get f(u) = ±iu+ c1,
which is a contradiction. Similarly, if g′′ = 0 , then we get f ′′ = 0.Thus we have:

Theorem 3. Let SC be a convolution of translation surface in Euclidean3-space. If
SC is flat or minimal then it is parameterized by (4.1) with f(u) = c1u + c2 and
g(v) = c3v + c4,where ci ∈ R.

5. Convolution of LN-translation surfaces in Euclidean 3-space

Let SCL be a convolution of LN-translation surface in E3. So, using (2.9) and (3.2),
we can define the convolution of LN- translation surface is parameterized by as

ΨCL(u, v) =
(
u− f ′, v − g′, u2 + cv2 − f − g + uf ′ + vg′

)
. (15)

The Gaussian curvature of SCL is given by

KCL =
P (u)Q(v)R(u)S(v)

W1(u, v)
, (16)

where

P =
(
−1 + f ′′

)
,

Q =
(
−1 + g′′

)
,

R =
(
−2 + f ′′ + f ′′

2 − 3uf ′′′
)
,

S =
(
−2c− g′′ + 2cg′′ + g′′

2 − vg′′′ − 2cvg′′′
)

and the funtion W1 depend on the functions f and g. Also, the mean curvature of
SCL is given by

HCL =
Q(v)J(v)R(u) + P (u)V (u)Y (v)

W2(u, v)
, (5.3)
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where

V =
((
−1 + f ′′

)2
+ u2

(
2 + f ′′

)2)
,

Y =
((
−1 + g′′

) (
2c+ g′′

)
− (1 + 2c) vg′′′

)
,

J =
((
−1 + g′′

)2
+
(
2cv + vg′′

)2)
and the funtion W2 depend on the functions f and g. So we have the following
result.

Corollary 4. Let SCL be a convolution surface of LN -translation surface in Eu-
clidean 3-space. If the convolution SCL is a flat surface, then at least one of the
following cases occur;

f(u) = c1 + c2u+
u2

2
,

f(u) = c3 + u
(
c4 − u− 3e−3c5

)
− 3e−6c5

(
1 + e3c5

)
ln
∣∣1 + ue3c5

∣∣ ,
g(v) = c6 + c7v +

v2

2
,

g(v) = c8 + v
(
c9 − cv + e−c10(1+2c)

)
+e−2c10(1+2c)

(
1

1 + 2c
+ vec10(1+2c)

)
ln
∣∣∣1− (1 + 2c) vec10(1+2c)

∣∣∣ ,
where ci ∈ R.

Proof. If SCL is a flat surface, then

P (u)Q(v)R(u)S(v) = 0

holds. So, we have the four possible cases;

P (u) = 0,

R(u) = 0,

Q(v) = 0

S(v) = 0.

Solving these differential equations we get the results. This completes the proof of
the corollary.

We assume that S∗ is minimal. Hence, the mean curvature is zero if and only
if

Q(v)J(v)R(u) + P (u)V (u)Y (v) = 0. (17)
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Then, the minimality condition (3.12) can be separated for the variables

R(u)

P (u)V (u)
= − Y (v)

Q(v)J(v)
= m,

where m ∈ R.Solving this equation for f and g for m = 0, we get

f(u) = c1 + u
(
c2 − u− 3e−3c3

)
+ 3e−6c3

(
1 + ue3c3

)
ln
∣∣1 + ue3c3

∣∣ , (18)

g(v) = c4 + v
(
c5 − cv + e−c6(1+2c)

)
+e−2c6(1+2c)

(
1

1 + 2c
− vec6(1+2c)

)
ln
∣∣∣1− (1 + 2c) vec6(1+2c)

∣∣∣ ,
where ci ∈ R. In (5.4), if we take

Q(v)J(v)

Y (v)
= −P (u)V (u)

R(u)
= m,

then we have

f(u) = c1 + uc2 +
u2

2
, (19)

g(v) = c3 + vc4 +
v2

2
,

where ci ∈ R and m = 0. Thus we have following theorem.

Theorem 5. A convolution surface of LN- translation surface SCL is minimal in
Euclidean 3-space if and only if it is a part of the surface (5.1) with (5.5) or (5.6).
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