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APPROXIMATION FOR PERIODIC FUNCTIONS VIA STATISTICAL
A-SUMMABILITY

S. KARAKUŞ and K. DEMIRCI

Abstract. In this paper, using the concept of statistical A-summability which is stronger than the
A-statistical convergence, we prove a Korovkin type approximation theorem for sequences of positive
linear operator defined on C∗(R) which is the space of all 2π-periodic and continuous functions on
R, the set of all real numbers. We also compute the rates of statistical A-summability of sequence of
positive linear operators.

1. Introduction

The idea of statistical convergence was introduced by Fast [5], which is closely related to the
concept of natural density or asymptotic density of subsets of the set of natural numbers N.
Let K be a subset of N. The natural density of K is the nonnegative real number given by
δ(K) := limn→∞

1
n |{k ≤ n : k ∈ K}| provided that the limit exists, where |B| denotes the

cardinality of the set B (see [14] for details). Then, a sequence x = {xk} is called statistically
convergent to a number L if for every ε > 0,

δ({k : |xk − L| ≥ ε}) = 0.
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This is denoted by st − limk→∞ xk = L (see [5], [7]). It is easy to see that every convergent
sequence is statistically convergent, but not conversely.

If x = {xk} is a number sequence and A = {ajk} is an infinite matrix, then Ax is the sequence
whose j-th term is given by

Aj (x) :=
∞∑
k=1

ajkxk

provided that the series converges for each j ∈ N. Thus we say that x is A-summable to L if

lim
j→∞

Aj(x) = L.

We say that A is regular if limj→∞Aj(x) = L whenever limk→∞ xk = L. The well-known
necessary and sufficient conditions [1] (Silverman-Toeplitz) for A to be regular are:

R1) ‖A‖ = sup
j→∞

∞∑
k=1

|ajk| <∞,

R2) lim
j→∞

ajk = 0 for each k ∈ N,

R3) lim
j→∞

∞∑
k=1

ajk = 1.

Freedman and Sember [6] introduced the following extension of statistical convergence. Let
A = {ajk} be a nonnegative regular matrix. The A-density of K is defined by

δA (K) := lim
j→∞

∞∑
k=1

ajkχK (k)
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provided that the limit exists, where χK is the characteristic function of K. Then the sequence
x = {xk} is said to be A-statistically convergent to the number L if for every ε > 0,

δA ({k ∈ N : |xk − L| ≥ ε}) = 0

or equivalently

lim
j→∞

∑
k:|xk−L|≥ε

ajk = 0.

We denote this limit by stA − limk→∞ xk = L (see [6], [8], [9]). The case in which A = C1, the
Cesàro matrix of order one, reduces to the statistical convergence, and also if A = I, the identity
matrix, then it coincides with the ordinary convergence.

Recently, the idea of statistical (C, 1)-summability was introduced in [11] and of statistical
(H,1)-summability in [12] by Moricz, and of statistical (N, p)-summability by Moricz and Orhan
[13]. Then these statistical summability methods were generalized by defining the statistical A-
summability in [4].

Now we recall statistical A-summability for a nonnegative regular matrix A.

Definition 1.1. Let A = {ajk} be a nonnegative regular matrix and x = {xk} be a sequence.
We say that x is statistically A-summable to L if for every ε > 0,

δ({j ∈ N : |Aj(x)− L| ≥ ε}) = 0,

i.e.,

lim
n→∞

1
n
|{j ≤ n : |Aj(x)− L| ≥ ε}| = 0.

Thus x = {xk} is statistically A-summable to L if and only if Ax is statistically convergent to L.
In this case we write (A)st − limk→∞ xk=L or, st− limj→∞Aj(x)=L.
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Using the Definition 1.1, we see that if a sequence is bounded and A-statistically convergent to
L, then it is A-summable to L, and hence statistically A-summable to L. However, its converse is
not always true. Such examples were given in [4].

In this paper, using the concept of statistical A-summability where A = {ajk} is a nonnegative
regular matrix, we give a generalization of the classical Korovkin approximation theorem by means
of sequences of positive linear operators defined on the space of all real valued continuous and 2π
periodic functions on R. We also compute the rates of statistical A-summability of sequence of
positive linear operators.

2. A Korovkin Type Theorem

We denote C∗(R), the space of all real valued continuous and 2π periodic functions on R. We
recall that if a function f in R has period 2π, then for all x ∈ R,

f(x) = f(x+ 2πk)

holds for k = 0,±1,±2, . . .. This space is equipped with he supremum norm

‖f‖C∗(R) = sup
x∈R
|f(x)|, (f ∈ C∗(R)).

Let L be a linear operator from C∗(R) into C∗(R). Then, as usual, we say that L is a positive
linear operator provided that f ≥ 0 implies L(f) ≥ 0. Also, we denote the value of L(f) at a point
x ∈ R by L(f(u);x) or, briefly, L(f ;x).

Throughout the paper, we also use the following test functions

f0(x) = 1, f1(x) = cosx f2(x) = sinx.

We also have to recall the classical Korovkin theorem [10].
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Theorem A. Let {Lk} be a sequence of positive linear operators acting from C∗(R) into itself.
Then, for all f ∈ C∗(R),

lim
k→∞

‖Lk(f)− f‖C∗(R) = 0

if and only if

lim
k→∞

‖Lk(fi)− fi‖C∗(R) = 0, (i = 0, 1, 2).

Recently, the statistical analog of Theorem A was studied by Duman [3]. It will be read as
follows.

Theorem B. Let A = {ajk} be a nonnegative regular matrix and let {Lk} be a sequence of
positive linear operators acting from C∗(R) into itself. Then for all f ∈ C∗(R),

stA − lim
k→∞

‖Lk(f)− f‖C∗(R) = 0

if and only if

stA − lim
k→∞

‖Lk(fi)− fi‖C∗(R) = 0, (i = 0, 1, 2).

Now we study the approximation properties of sequence of positive linear operators on the space
C∗(R) via statistical A-summability where A = {ajk} is a nonnegative regular matrix.

Theorem 2.1. Let A = {ajk} be a nonnegative regular matrix and let {Lk} be a sequence of
positive linear operators acting from C∗(R) into itself. Then, for all f ∈ C∗(R),

st− lim
j→∞

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

= 0(2.1)
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if and only if

st− lim
j→∞

∥∥∥∥∥
∞∑
k=1

ajkLk(fi)− (fi)

∥∥∥∥∥
C∗(R)

= 0 (i = 0, 1, 2).(2.2)

Proof. Since each fi (i = 0, 1, 2) belongs to C∗(R), the implication (2.1) ⇒ (2.2) is clear. Now,
to prove the implication (2.2) =⇒ (2.1), assume that (2.2) holds. Let f ∈ C∗(R) and let I be a
closed subinterval of length 2π of R. Fix x ∈ I. By the continuity of f at x, for given ε > 0 there
exists δ > 0 such that

|f(t)− f(x)| < ε

for all t satisfying |t− x| < δ. On the other hand, by the boundedness of f , we have

|f(t)− f(x)| ≤ 2‖f‖C∗(R)

for all t ∈ R. Now consider the subintervals (x− δ, 2π + x− δ] of length 2π. From [3] we can see
that

|f(t)− f(x)| < ε+
2‖f‖C∗(R)

sin2 δ
2

ψ(t)(2.3)

holds for all t ∈ R, where ψ(t) := sin2
(
t−x
2

)
.
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By using (2.3) and the positivity and monotonicity of Lk we have∣∣∣∣∣
∞∑
k=1

ajkLk(f ;x)− f(x)

∣∣∣∣∣
≤

∞∑
k=1

ajkLk(|f(t)− f(x)| ;x) + |f(x)|

∣∣∣∣∣
∞∑
k=1

ajkLk(f0;x)− f0(x)

∣∣∣∣∣
≤

∞∑
k=1

ajkLk

(
ε+

2 ‖f‖C∗(R)

sin2 δ
2

ψ(t);x

)
+ |f(x)|

∣∣∣∣∣
∞∑
k=1

ajkLk (f0;x)− f0(x)

∣∣∣∣∣
≤ ε+ ε

∣∣∣∣∣
∞∑
k=1

ajkLk(f0;x)− f0(x)

∣∣∣∣∣+ ‖f‖C∗(R)

∣∣∣∣∣
∞∑
k=1

ajkLk(f0;x)− f0(x)

∣∣∣∣∣
+

2 ‖f‖C∗(R)

sin2 δ
2

∞∑
k=1

ajkLk (ψ(t);x) .

After some simple calculations, we also get

ψ(t) =
1
2

(1− cos t cosx− sin t sinx) .

So we can get
∞∑
k=1

ajkLk(ψ(t);x) ≤ 1
2

{∣∣∣∣∣
∞∑
k=1

ajkLk(f0;x)− f0(x)

∣∣∣∣∣
+ |cosx|

∣∣∣∣∣
∞∑
k=1

ajkLk(f1;x)− f1(x)

∣∣∣∣∣+ |sinx|

∣∣∣∣∣
∞∑
k=1

ajkLk(f2;x)− f2(x)

∣∣∣∣∣
}
.

(2.4)
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Then, using (2.4), we obtain

∣∣∣∣∣
∞∑
k=1

ajkLk(f ;x)− f(x)

∣∣∣∣∣
≤ ε+

(
ε+ ‖f‖C∗(R) +

‖f‖C∗(R)

sin2 δ
2

){∣∣∣∣∣
∞∑
k=1

ajkLk(f0;x)− f0(x)

∣∣∣∣∣
+

∣∣∣∣∣
∞∑
k=1

ajkLk(f1;x)− f1(x)

∣∣∣∣∣+

∣∣∣∣∣
∞∑
k=1

ajkLk(f2;x)− f2(x)

∣∣∣∣∣
}
.

Then, we obtain

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≤ ε+ U


∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗(R)

+

∥∥∥∥∥
∞∑
k=1

ajkLk(f1)− f1

∥∥∥∥∥
C∗(R)

+

∥∥∥∥∥
∞∑
k=1

ajkLk(f2)− f2

∥∥∥∥∥
C∗(R)


(2.5)

where U := ε+ ‖f‖C∗(R) +
‖f‖C∗(R)

sin2 δ
2

.
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Now, for a given r > 0, choose ε > 0 such that ε < r. By (2.5), it is easy to see that

1
n

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≥ r


∣∣∣∣∣∣

≤ 1
n

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗(R)

≥ r − ε
3U


∣∣∣∣∣∣

+
1
n

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk (f1)− f1

∥∥∥∥∥
C∗(R)

≥ r − ε
3U


∣∣∣∣∣∣

+
1
n

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk (f2)− f2

∥∥∥∥∥
C∗(R)

≥ r − ε
3U


∣∣∣∣∣∣ .

Then using the hypothesis (2.2), we get

lim
n→∞

1
n

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≥ r


∣∣∣∣∣∣ = 0

for every r > 0 and the proof is compete. �
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3. Rate of Convergence

In this section, using statistical A-summability we study the rate of convergence of positive linear
operators defined C∗(R) into itself with the help of the modulus of continuity.

Demirci and Karakuş [2] introduced the rates of statistical A-summability of sequence as follows.

Definition 3.1 ([2]). Let A = {ajk} be a nonnegative regular matrix. A sequence x = {xk} is
statistical A-summable to a number L with the rate of β ∈ (0, 1) if for every ε > 0,

lim
n→∞

|{j ≤ n : |Aj(x)− L| ≥ ε}|
n1−β = 0.

In this case, it is denoted by
xk − L = o

(
n−β

)
((A)st) .

Using this definition, we obtain the following auxiliary result.

Lemma 3.2 ([2]). Let A = {ajk} be a nonnegative regular matrix. Let x = {xk} and y = {yk}
be bounded sequences. Assume that xk − L1 = o

(
n−β1

)
((A)st) and yk − L2 = o

(
n−β2

)
((A)st).

Let β := min {β1, β2}. Then we have:
(i) (xk − L1)∓ (yk − L2) = o

(
n−β

)
((A)st)

(ii) λ (xk − L1) = o
(
n−β1

)
((A)st) for any real number λ.

Now we remind the concept of modulus of continuity. For f ∈ C∗(R), the modulus of continuity
of f , denoted by ω (f ; δ1), is defined by

ω (f ; δ1) := sup
|t−x|≤δ1

|f(t)− f(x)| (δ1 > 0) .

It is also well know that, for any λ > 0 and for all f ∈ C∗(R)

ω (f ;λδ1) ≤ (1 + [λ])ω (f ; δ1)(3.1)
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where [λ] is defined to be the greatest integer less than or equal to λ.
Then we have the following result.

Theorem 3.1. Let A = {ajk} be a nonnegative regular matrix and let {Lk} be a sequence of
positive linear operators acting from C∗(R) into itself. Assume that the following conditions holds:

(i) ‖Lk (f0)− f0‖C∗(R) = o
(
n−β1

)
((A)st) on R,

(ii) ω(f ; γj) = o
(
n−β2

)
((A)st) on R where γj :=

√
‖
∑∞
k=1 ajkLk (ϕ)‖

C∗(R)
with ϕ(t) =

sin2
(
t−x
2

)
.

Then we have for all f ∈ C∗(R),

‖Lk(f)− f‖C∗(R) = o
(
n−β

)
((A)st) on R

where β := min{β1, β2}.
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Proof. Let f ∈ C∗ (R) and x ∈ R be fixed. Using (3.1) and the positivity and monotonicity of
Lk, we get for any δ1 > 0 and j ∈ R,∣∣∣∣∣

∞∑
k=1

ajkLk(f ;x)− f(x)

∣∣∣∣∣
≤

∞∑
k=1

ajkLk(|f(t)− f(x)| ;x) + |f(x)|

∣∣∣∣∣
∞∑
k=1

ajkLk(f0;x)− f0(x)

∣∣∣∣∣
≤

∞∑
k=1

ajkLk

((
1 +

(t− x)2

δ21

)
;x

)
ω(f ; δ1) + ‖f‖C∗(R)

∣∣∣∣∣
∞∑
k=1

ajkLk (f0;x)− f0(x)

∣∣∣∣∣
≤

∞∑
k=1

ajkLk

((
1 +

π2

δ21
sin2

(
t− x

2

))
;x
)
ω (f ; δ1) + ‖f‖C∗(R)

∣∣∣∣∣
∞∑
k=1

ajkLk (f0;x)− f0(x)

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
k=1

ajkLk (f0;x)− f0(x)

∣∣∣∣∣ω (f ; δ1) + ω (f ; δ1)

+
π2

δ21
ω(f ; δ1)

∞∑
k=1

ajkLk

(
sin2

(
t− x

2

)
;x
)

+ ‖f‖C∗(R)

∣∣∣∣∣
∞∑
k=1

ajkLk (f0;x)− f0(x)

∣∣∣∣∣ .
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Hence, we get∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≤

∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗(R)

ω(f ; γj) + (1 + π2)ω(f ; γj)

+ ‖f‖C∗(R)

∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗(R)

where δ1 := γj :=
√
‖
∑∞
k=1 ajkLk(ϕ)‖

C∗(R)
. Then, we obtain∥∥∥∥∥

∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≤ K


∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗(R)

ω(f ; γj)

+ω(f ; γj) +

∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗(R)


(3.2)

where K = max
{
‖f‖C∗(R) , 1 + π2

}
.
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Hence, for given ε > 0, from (3.2) and Lemma 3.2, it follows

1
n1−β

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≥ ε


∣∣∣∣∣∣

≤ 1
n1−β1

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk (f0)− f0

∥∥∥∥∥
C∗(R)

≥
√

ε

3K


∣∣∣∣∣∣

+
1

n1−β2

∣∣∣∣{j ≤ n : ω(f ; γj) ≥
√

ε

3K

}∣∣∣∣
+

1
n1−β2

∣∣∣{j ≤ n : ω (f ; γj) ≥
ε

3K

}∣∣∣
+

1
n1−β1

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk (f0)− f0

∥∥∥∥∥
C∗(R)

≥ ε

3K


∣∣∣∣∣∣

(3.3)

where β := min {β1, β2}. Letting n→∞ in (3.3), from (i) and (ii), we conclude that

lim
n→∞

1
n1−β

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≥ ε


∥∥∥∥∥∥ = 0,

which means

‖Lk(f)− f‖C∗(R) = o
(
n−β

)
((A)st) on R.

The proof is completed. �
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Now we give the following classical rates of convergence of a sequence of positive linear operators
defined on C∗(R).

Corollary 1. Let {Lk} be a sequence of positive linear operators acting from C∗(R) into itself.
Assume that the following conditions holds:

(i) limk→∞ ‖Lk(f0)− f0‖C∗(R) = 0,

(ii) limk→∞ ω(f ; δk)=0 on R where δk :=
√
‖Lk(ϕ)‖C∗(R) with ϕ(t)=sin2

(
t−x
2

)
.

Then for all f ∈ C∗(R), we have

lim
k→∞

‖Lk(f)− f‖C∗(R) = 0.

4. An Application to Theorem 2.1 and Theorem 3.1

In this section, we display an example of a sequence of positive linear operators. First of all, we
show that Theorem 2.1 holds, but Theorem A and Theorem B do not hold. Then, using the same
sequence of positive linear operators, we show that Theorem 3.1 holds but, Corollary 1 does not
hold.

Let A be Cesàro matrix, i.e.,

ajk =
{ 1

j , 1 ≤ k ≤ j,
0, otherwise,

and let

ξk =
{

1, if k is odd,
−1, if k is even.(4.1)
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Then, we observe that, A = {ajk} is a nonnegative regular matrix and for the sequence ξ := {ξk}

st− lim
j→∞

Aj(ξ) = 0.

However, the sequence {ξk} is not convergent in the usual sense and A-statistical convergent to 0.
Then, consider the following Fejér operators

Fk(f ;x) :=
1
kπ

∫ π

−π
f(t)

sin2
(
k
2 (t− x)

)
2 sin2

[
t−x
2

] dt(4.2)

where k ∈ N, f ∈ C∗ [−π, π]. Then, we get (see [10])

Fk(f0;x) = 1, Fk(f1;x) =
k − 1
k

cosx, Fk(f2;x) =
k − 1
k

sinx.

Now, using (4.1) and (4.2), we introduce the following positive linear operators defined on the
space C∗ [−π, π]

Lk(f ;x) = (1 + ξk)Fk(f ;x).(4.3)

(i) Now, we consider the positive linear operators defined by (4.3) on C∗ [−π, π]. Since st −
limj→∞Aj(ξ) = 0, we conclude that

st− lim
j→∞

∥∥∥∥∥
∞∑
k=1

ajkLk(fi)− (fi)

∥∥∥∥∥
C∗[−π,π]

= 0, (i = 0, 1, 2).
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Then, by Theorem 2.1, for all f ∈ C∗[−π, π], we obtain

st− lim
j→∞

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− (f)

∥∥∥∥∥
C∗[−π,π]

= 0.

However, since {ξk} does not converge in the usual sense and A-statistical converges to 0, we
conclude that Theorem A and Theorem B do not work for the operators Lk in (4.3) while our
Theorem 2.1 still works.

(ii) Now, we consider the positive linear operators defined by (4.3) on C∗ [−π, π]. We observe
that ∥∥∥∥∥

∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗[−π,π]

=

∣∣∣∣∣1j
j∑

k=1

(1 + ξk)− 1

∣∣∣∣∣ =

∣∣∣∣∣1j
j∑

k=1

ξk

∣∣∣∣∣ .
Since

lim
j→∞

∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗[−π,π]

= 0,

then we get

lim
n→∞

1
n1−β1

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗[−π,π]

≥ ε


∣∣∣∣∣∣ = 0,

which means that

‖Lk(f0)− f0‖C∗[−π,π] = o
(
n−β1

)
((A)st).(4.4)

Now, we compute the quantity Lk (ϕ;x) where ϕ(t) = sin2
(
t−x
2

)
. After some calculations, we get

Lk (ϕ;x) =
1 + ξk

2k
.
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Then, we obtain γj :=
√
‖
∑∞
k=1 ajkLk(ϕ)‖

C∗[−π,π]
=
√∣∣∣ 1j ∑j

k=1
1+ξk

2k

∣∣∣.
Since limj→∞

√∣∣∣ 1j ∑j
k=1

1+ξk

2k

∣∣∣ = 0, we get st − limj→∞

√∣∣∣ 1j ∑j
k=1

1+ξk

2k

∣∣∣ = 0. By the uniform

continuity of f on [−π, π], we write

ω(f ; γj) = o
(
n−β2

)
((A)st).(4.5)

From (4.4) and (4.5), the sequence of positive linear operators {Lk} satisfies all hypotheses of
Theorem 3.1. So, for all f ∈ C∗[−π, π], we have

‖Lk(f)− f‖C∗[−π,π] = o
(
n−β

)
((A)st).

However, since {ξk} is not convergent, the conditions (i) and (ii) of Corollary 1 do not hold. So,
the sequence {Lk} given by (4.3) does not converge uniformly to the function f ∈ C∗ [−π, π] .
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2. Demirci K. and Karakuş S., Statistical A-Summability of Positive Linear Operators, Mathematical and Com-

puter Modelling 53 (2011), 189–195.
3. Duman O., Statistical approximation for periodic functions, Dem. Math. 36(4) (2003),

873–878.
4. Edely O. H. H., Mursaleen M., On statistical A-summability, Mathematical and Computer Modelling 49 (2009),

672–680.
5. Fast H., Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
6. Freedman A. R. and Sember J. J., Densities and summability, Pacific J. Math. 95 (1981), 293–305.
7. Fridy J. A., On statistical convergence, Analysis 5 (1985), 301–313.
8. Fridy J. A. and Miller H. I., A matrix characterization of statistical convergence, Analysis 11 (1991), 59–66.

9. Kolk E., Matrix summability of statistically convergent sequences, Analysis 13 (1993), 77–83.
10. Korovkin P. P., Linear operators and approximation Theory, Hindustan Publ. Co., Delhi, 1960.



JJ J I II

Go back

Full Screen

Close

Quit

11. Moricz F., Tauberian conditions under which statistical convergence follows from statistical summability (C, 1),

J. Math. Anal. Appl. 275 (2002), 277–287.

12. , Theorems related to statistical harmonic summability and ordinary convergence of slowly decreasing
or oscillating sequences, Analysis 24 (2004), 127–145.

13. Moricz F. and Orhan C., Tauberian conditions under which statistical convergence follows from statistical

summability by weighted means, Studia Sci. Math. Hung. 41(4) (2004), 391–403.
14. Niven I., Zuckerman H. S. and Montgomery H., An Introduction to the Theory of Numbers, 5th Edition, Wiley,

New York, 1991.
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