DUNFORD-PETTIS SETS IN BANACH LATTICES

B. AQZZOUZ anxp K. BOURAS

ABSTRACT. We study the class of Dunford-Pettis sets in Banach lattices. In particular, we establish
some sufficient conditions for which a Dunford-Pettis set is relatively weakly compact (resp. relatively
compact).

1. INTRODUCTION AND NOTATION

Let us recall from [2] that a norm bounded subset A of a Banach space X is said to be a Dunford-
Pettis set whenever every weakly compact operator from X to an arbitrary Banach space Y carries
A to a norm relatively compact set of Y. This is equivalent to saying that A is a Dunford-Pettis
set if and only if every weakly null sequence (f,) of X’ converges uniformly to zero on the set A,
that is, sup,ca [fn(2)| — 0 (see [7, Theorem 1}).

It is well known that the class of Dunford-Pettis sets contains strictly that of relatively compact
sets, that is, every relatively compact set is a Dunford-Pettis set. But a Dunford-Pettis set is
not necessarily relatively compact. In fact, the closed unit ball B, is a Dunford-Pettis set in
co (because (cp)’ = £* has the Schur property), but it is not relatively compact. However, if X
is a reflexive Banach space, the class of Dunford-Pettis sets and that of relatively compact sets
in X coincide. Also, we will prove that if F is a discrete KB-space, these two classes coincide
(Corollary 3.10).
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On the other hand, we note that a Dunford-Pettis set is not necessarily relatively weakly com-
pact. In fact, the closed unit ball B, is a Dunford-Pettis set in cp, but it is not relatively weakly
compact. And conversely a relatively weakly compact set is not necessarily Dunford-Pettis. In
fact, the closed unit ball B2 is a relatively weakly compact set in £2, but it is not a Dunford-Pettis
set in /2.

However, we will establish that if £ is a dual KB-space, then each Dunford-Pettis set of E is
relatively weakly compact (see Corollary 3.4). And conversely, if X is a Banach space with the
Dunford-Pettis property, then each relatively weakly compact subset of X is a Dunford-Pettis set
(see Proposition 2.3).

The aim of this paper is to study the class of Dunford-Pettis sets in Banach lattices. Also, we
give some consequences. As an example we will give some equivalent conditions for T'(A) to be
a Dunford-Pettis set where A is a norm bounded solid subset of E and T is an operator from a
Banach lattice F into a Banach space X (see Theorem 2.12).

To do this, we need to introduce a new class of operators, that we call order Dunford-Pettis
operators. An operator 7" from a Banach lattice E into a Banach space X is called order Dunford-
Pettis if it carries each order bounded subset of E onto a Dunford-Pettis set of X. For example,
the identity operator of the Banach lattice ¢y is order Dunford-Pettis.

On the other hand, there exist operators which are not order Dunford-Pettis. In fact, the
ﬂﬂﬂﬂ natural embedding J: L*[0,1] — L2[0,1] fails to be order Dunford-Pettis (if not, that is, if

J: L*[0,1] — L?[0,1] is an order Dunford-Pettis operator, it follows from Theorem 2.7 that
Go back ir2p0,11 ©J = J is an AM-compact operator, but J fails to be AM-compact (see [8, Example on
p. 222])).

Let us recall from [8] that an operator T' from a Banach lattice F into a Banach space X is said
to be AM-compact if it carries each order bounded subset of E onto a relatively compact set of X.

To state our results, we need to fix some notation and recall some definitions. A Banach lattice
is a Banach space (E, || - ||) such that E is a vector lattice and its norm satisfies the following
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property: for each x,y € E such that |z| < |y|, we have ||z| < |ly||. Note that if E is a Banach
lattice, its topological dual E’, endowed with the dual norm and the dual order, is also a Banach
lattice. A norm || -|| of a Banach lattice FE is order continuous if for each generalized sequence (z,)
such that z, | 0 in E, (x,) converges to 0 for the norm || - ||, where the notation z, | 0 means
that (x) is decreasing, its infimum exists and inf(z,) = 0.

An operator T': E — F between two Banach lattices is a bounded linear mapping. It is positive
if T(z) > 0in F whenever z > 0in E. If T: E — F is a positive operator between two Banach
lattices, then its adjoint 77: F/ — E’, defined by T” (f) (z) = f (T (z)) for each f € F’ and for
each z € E, is also positive. We refer the reader to [2] for unexplained terminologies on Banach
lattice theory and positive operators.

2. MAIN RESULTS

The following result gives some characterizations of Dunford-Pettis sets in a Banach space.

Proposition 2.1 ([7]). Let X be a Banach space and let A be a norm bounded set in X. The
following statements are equivalent:

1. A is Dunford-Pettis set.
2. For each sequence (x,) in A, fn(x,) — 0 for every weakly null sequence (f,) of X'.

Proposition 2.2. Let X be a Banach space and let (x,) be a norm bounded sequence in X.
The following statements are equivalent:

1. The subset {x,, n € N} is a Dunford-Pettis set.

2. fr(yx) — O for each sequence (yi) of {xn, n € N} and for every weakly null sequence (f)
of X'.

3. fn(zn) — 0 for every weakly null sequence (f,) of X'.



A Banach space X has the Dunford-Pettis property if every continuous weakly compact operator
T from X into another Banach space Y transforms weakly compact sets in X into norm-compact
sets in Y. This is equivalent to the saying that for any weakly convergent sequences (x,) of X and
(fn) of X', the sequence (f,(z,)) converges.

Proposition 2.3 ([6]). Let X be a Banach space. Then the following statements are equivalent:

1. X has the Dunford-Pettis property.
2. For every weakly null sequence (z,,) in X, the subset {z,,, n € N} is a Dunford-Pettis set.
3. Ewvery relatively weakly compact subset of X is a Dunford-Pettis set.

Remark 1. If the Banach space X does not have the Dunford-Pettis property, then there exists
a weakly null sequence (z,,) in X such that {z,, n € N} is not a Dunford-Pettis set.

Let us recall that a Banach lattice £ has the weak Dunford-Pettis property if every weakly
compact operator T defined on E (and taking their values in a Banach space X) is almost Dunford-
Pettis, that is, the sequence (||7(zy)||) converges to 0 in X for every weakly null sequence ()
consisting of pairwise disjoint elements in £. This is equivalent to the saying that for any weakly
null sequence (z,,) consisting of pairwise disjoint elements in E and for any weakly null sequence
(fn) of X', fa(@n) — 0.

Proposition 2.4. Let E be a Banach lattice. Then the following statements are equivalent:
1. X has the weak Dunford-Pettis property.
2. For every disjoint weakly null sequence (x,,) E™, the subset {x,,, n € N} is a Dunford-Pettis
set.

Remark 2. If the Banach lattice E does not have the weak Dunford-Pettis property, then there
exists a disjoint weakly null sequence (z,,) in ET such that {z,,, n € N} is not a Dunford-Pettis
set.



Let us recall that an operator 7" from a Banach lattice F into a Banach space X is said to be
order weakly compact if for each x € E™T, the set T ([0, z]) is relatively weakly compact in X.
The following result gives some examples of Dunford-Pettis sets in a Banach lattice.

Theorem 2.5. Let E be a Banach lattice. Then for every order bounded disjoint sequence ()
in E, the subset {x,, n € N} is a Dunford-Pettis set.

Proof. Let (x,) be an order bounded disjoint sequence in E. To prove that {z,, n € N} is a
Dunford-Pettis set it suffices to show that f,(z,) — 0 for every weakly null sequence (f,) of X’
(see Proposition 2.2).

For that, let (f,) be a weakly null sequence in E’. Consider the operator S: E — ¢y defined
by S(z) = (fu(x))22, for each € E. Then S is weakly compact ([2, Theorem 5.26]), and so S
is order weakly compact. Hence by [2, Theorem 5.57] ||5(2;)||oc = ||(fn(2i))n2oll — O for every
order bounded disjoint sequence (z;) in E. Finally, |f,(2,)] < ||(fi(2n))i20llo — 0, so the proof
is finished. O

Remark 3. In ¢°°, the closed unit ball By = [— e, €] is not a Dunford-Pettis set. Hence there
exists a sequence (x,) in [— e, e] such that (z,,) is not Dunford-Pettis (Proposition 2.1).

Let E be a Banach lattice and E’ its topological dual. The absolute weak topology |o| (E, E') is
the locally convex solid topology on E generated by the family of lattice seminorms {Py : f € E'}
where Pf(z) = |f|(|z|) for each € E. For more information about locally convex solid topologies,
we refer the reader to the book of Aliprantis and Burkinshaw [1].

Other examples of Dunford-Pettis sets in a Banach lattice, are given by the following Theorem.

Theorem 2.6. Let E be a Banach lattice and let A be an order bounded set of E. If A is
lo|(E, E')-totally bounded, then A is a Dunford-Pettis set.



Proof. Let (f,) be a weakly null sequence in E’, let # € E™T such that |y| < x for every y € A.
Fix € > 0. By [2, Theorem 4.37] there exists f € (E')" such that (|f,| — f)*(z) < § for each n.

Since A is |o| (E, E')-totally bounded, there exists a finite set {z1,...,2x} C A such that for
each z € A, we have f(|z —x;|) < § for at least one 1 <4 < k. Since f, — 0 weakly, there exists
N with |f,(2;)| < § foreachi=1,...,kand all n > N.

Now, let z € A. Choose 1 <i < k with f(|z — x;]) < § and note that |z — x;| < 2z holds. In
particular, for n > N, we have

[fn(2)] < fnlz = 20| + [zl

< |ful(z = i) + 5

< (fal = HF (2 = zil) + £z — @) +

< 2(|fal - @)+ = +

AN

<e.

This implies sup,¢ca |fn(2)] — 0, and then A is a Dunford-Pettis set. O

The next result characterizes the class of order Dunford-Pettis operators.

Theorem 2.7. For an operator T from a Banach lattice E into a Banach space X, the following
statements are equivalent:

1. T: E — X is an order Dunford-Pettis operator.

2. If S is a weakly compact operator from X into an arbitrary Banach space Z, then S oT is
an AM-compact operator.

3. For every weakly null sequence (fy,) of X', |T'(fn)| — 0 for the topology o(E', E).



Proof. (1) = (2) Let S be a weakly compact operator from X into an arbitrary Banach space Z.
It follows from (1) that for each z € E*, T'([—z, z]) is a Dunford-Pettis set, and hence S(T'([—x, z]))
is a norm relatively compact subset of Z. This proves that S o T is AM-compact.
(2) = (3) Let (fy) be a weakly null sequence of X’. Consider the operator S: X — ¢y defined
by
S@I=( @)=y for each x € X.

Then S is weakly compact ([2, Theorem 5.26]). But according to our hypothesis, S(T'([-z, z])) is
a norm relatively compact subset of ¢y for each z € ET. From this it follows that |T7(f,)|(z) =
SUPye[—g 2] [T (fn) ()] = SUP e ((—s,a)) [fn(2)] — O for each z € E* (see [2, Exercise 14 in Section
3.2]).

(3) = (1) For each x € ET, supyer(—pa [fn(¥)] = [T'(f2)l(x) — 0 for every weakly null
sequence (f,,) of X’. This shows that T'([—z, z]) is a Dunford-Pettis set for each x € Et. O

As a consequence of Theorem 2.6 and Theorem 2.7, we obtain the following corollaries

Corollary 2.8. Let T: E — F be a regular operator between two Banach lattices such that
T([—z,x]) is |o|(F, F')-totally bounded for each x € E™. If f,, — 0 for o(F', F""), then |T"(f,)| — 0
for o(E', E).

Proof. By Theorem 2.6, the subset T'([—z,x]) is a Dunford-Pettis set for each x € ET and the
conclusion follows from Theorem 2.7. O

We note that each AM-compact operator from a Banach lattice E into a Banach space F' is
order Dunford-Pettis. However an order Dunford-Pettis operator is not necessarily AM-compact.
In fact, the identity operator of the Banach lattice L! [0, 1] is order Dunford-Pettis but it is not
AM-compact.



Corollary 2.9. Let E and F be two Banach lattices such that F is reflexive. Then the class of
order Dunford-Pettis operators from E into F' coincide with that of AM-compact operators from E
into F.

Proof. It suffices to show that if T: E — F is an order Dunford-Pettis operator, then T is
AM-compact. In fact, since F' is reflexive, its identity operator Idp: F — F' is weakly compact.
Hence Theorem 2.7 implies Idg o7 = T' is an AM-compact operator. O

Corollary 2.10. Let E be a Banach lattice. Then the following statements are equivalent:
1. The identity operator Idg: E — E is order Dunford-Pettis.
2. For each x € EY, [—x,z] is a Dunford-Pettis set.

3. For every weakly null sequence (fy,) of E', we have |f,| — 0 for o(E', E).
4. Every weakly compact operator from E into an arbitrary Banach space is AM-compact.

Lemma 2.11. Let E be a Banach lattice, let A be a norm bounded subset of ET, (x,) C A,
(fn) C (ENY and e > 0. If fo(x) — 0 for every x € A, then there exists a subsequence (zp,, fn,)
of (@, fn) such that

k-1
€
fnk(anJ <W for k> 2.
j=1

Proof. Put x,, = x; and f,, = fi. Since f,(zn,) = fu(z,) — 0, there exists ng > ny = 1 such
that fr,(zn,) < 57z Now, assume constructed (zn, )} _1, (fa,)h—y such that fnk(zgc;ll T ) €

sarz for all k € {2,...,p}. As f,(3oh—1 Tny) = D pi fn(@n,) — 0, there exists nyq1 > n, such

that
P €
fnp+1 (kZInk> < m
=il
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This completes the proof. O

The next main result gives some equivalent conditions for T(A) to be a Dunford-
-Pettis set where A is a norm bounded solid subset of £ and 7' is an operator from a Banach
lattice F into a Banach space X.

Theorem 2.12. Let T be an operator from a Banach lattice E into a Banach space X and let
A be a norm bounded solid subset of E. Then the following statements are equivalent:

1. T(A) is a Dunford-Pettis set.

2. The subsets T([—x,z]) and {T(x,), n € N} are Dunford-Pettis for each x € AT = AN E™
and for each disjoint sequence (x,) in AT.

3. For every weakly null sequence (f,)of E', we have |T'(f,)|(x) — 0 for all z € AT and
fn(T(xy,)) — 0 for each disjoint sequence (x,) in AT.

Proof. 1. = 2. Obvious.

2. = 3. Obvious.

3. = 1. To prove that T'(A) is a Dunford-Pettis set, it is sufficient to show that sup,ca [77(f5)(2)]
— 0 for every weakly null sequence (f,,) of X’. Assuming this to be false, let (f,,) be such a se-
quence satisfying sup,ca |T"(fn)(x)| > € > 0 for some € > 0 and all n. For every n there exists y,
in A such that |T"(f,)|(yn) > €. Since T'([—y,y]) is a Dunford-Pettis set for each y € AT, then

IT"(fn)|(y) — O for every y € A", and hence by Lemma 2.11, we may assume (by passing to a
subsequence, if necessary) that

&
|T’(fn)|(2yz> <W fornZZ.



For n > 2, let

n—1 o0 4
i=1 =1
Note that 221 27 %y, exists since F is a Banach space. Now, the disjointness of (z,,) follows from
Tn < (Yo — 4"ym)T  and
T < (Ym — 47" y) T =474 Y — yu)T =47 (yp — 4"y)”  for m < n.

Also, since 0 < z,, < y,, for every n and (y,) in A, then (x,) C A*.
On the other hand, the inequality

T/ (Alen) 2 PG (3 = 4 =2 3027w

i=

€ —n — —1
2= G2 el )

shows that |T”(fn)|(zn) > § for n sufficiently large (because 27"|T"(f,)| - (3i2, 27 "y:) — 0).

In view of |T"(fn)|(xn) = sup{|fn(T(2))| : |z| < z,}, for each n sufficiently large there exists
some |z,| < @p with |fn(T(2,))] > §. Since (z}) and (z,) are both norm bounded disjoint
Go back sequences in AT, it follows from our hypothesis that
Full Screen g < |fn (T(zn))|

Close (T D] + 1 fa(T(27))] — 0
which is impossible. This proves that T'(A) is a Dunford-Pettis set. O

Quit
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A relationship between a solid Dunford-Pettis set and its disjoint sequences is included in the
next result.

Corollary 2.13. Let E be a Banach lattice and let A be a norm bounded solid subset of E. The
following statements are equivalent

1. A is a Dunford-Pettis set.

2. The subsets [—x,z]| and {z,, n € N} are Dunford-Pettis, for each x € At and for each
disjoint sequence (z,,) in AT.

3. For every weakly null sequence (f,,) of E', we have | f,|(x) — 0 for allx € A* and fn(x,) —
0 for each disjoint sequence (x,,) in AT.

Remark 4. Let T be an operator from a Banach space X into a Banach space Y. By the
equality sup,cr(py) [fa(y)l = [|T7(fn)llx, for every weakly null sequence (f,) in Y’, it follows
easily that T'(Bx) is a Dunford-Pettis set in Y if and only if 7" is a Dunford-Pettis operator,
where By is the closed unit ball of X.

The next result characterizes the adjoint of Dunford-Pettis operators from a Banach lattice into
a Banach space.

Corollary 2.14. For an operator T from a Banach lattice E into a Banach space X, the
following statements are equivalent:
1. The adjoint T': X' — E' is Dunford-Pettis.
2. T(Bg) is a Dunford-Pettis set.
3. T: E — X is order Dunford-Pettis and {T(z,) : n € N} is a Dunford-Pettis set for each
disjoint sequence (x,,) in Bj.
4. |T'(fn)| — 0 for o(E', E) and fn(T(z,)) — 0 for every weakly null sequence (f,,) of E' and
for each disjoint sequence (x,,) in Bj;.



Proof. 1. & 2. See Remark 4.
2. & 3. & 4. See Theorem 2.12. O

A Banach lattice E has the Schur property if each weakly null sequence in E converges to zero
in norm.

Corollary 2.15. Let E be a Banach lattice. Then the following statements are equivalent:

1. E’ has the Schur property.

2. Bg is a Dunford-Pettis set.

3. |fnl — 0 for o(E',E) and f,(x,) — 0 for every weakly null sequence (f,) of E' and for
each disjoint sequence (x,,) in Bf.

3. DUNFORD-PETTIS SETS WHICH ARE RELATIVELY WEAKLY COMPACT
(RESP. RELATIVELY COMPACT)

Let us recall from [5] that a norm bounded subset K of the topological dual X’ and of a Banach
space X is called an (L) set in X’ whenever every weakly null sequence (z,) of X converges
uniformly to zero on the set K, that is, sup ey [ f(2n)] — 0.

As examples, the closed unit ball By~ is an (L) set in £°°, but the closed unit ball By is not an
(L) set in 1. On the other hand, every Dunford-Pettis set in X’ is an (L) set, but an (L) set is
not necessarily Dunford-Pettis. In fact in £°°, the closed unit ball By~ is an (L) set, but it is not
Dunford-Pettis.

Let us recall from [8] that a non-empty bounded subset A of a Banach lattice E is said to be
L-weakly compact if ||z, || — 0 for every disjoint sequence (z,) contained in the solid hull of A.
Every L-weakly compact set is relatively weakly compact ([8, Proposition 3.6.5]). In £°° the closed
unit ball By = [—e, €] is an (L) set, but it is not relatively weakly compact, and then it is not
L-weakly compact.



In the following we use this notion to give a characterization of the order continuity of the dual
norm.

Theorem 3.1. Let E be a Banach lattice. The following statements are equivalent:

1. The norm of E' is order continuous.

2. Any (L) set in E' is L-weakly compact.

3. Any (L) set in E' is relatively weakly compact.

4. Each Dunford-Pettis operator from E to any Banach space X is weakly compact.

Proof. 1. = 2. Let K be an (L) set in E’ and for each = € E, let
pi (z) = sup{|2’|(|z]) : 2’ € K} =sup{z’(z) : 2’ € K and |z| < |z|}.

Since K is norm bounded, px (z) € R holds for each € E, and clearly pk is a lattice seminorm
on E.

On the other hand, if (z,,) is a disjoint sequence of Br where Bp is the closed unit ball of E,
then pg(z,) — 0 holds. To see this, let ¢ > 0. For each n choose z), € K and |z,| < |z,| with
px (zn) < €+ ), (2y). Since the norm of E’ is order continuous and as (z,) is a disjoint sequence
of Bg (because |z,| < |x,| and (z,) is disjoint), it follows from [8, Theorem 2.4.14] that z, — 0
weakly. Hence the definition of an (L) set in E’ proves that z/,(z,) — 0, and so limsup px (z,) < &
holds for all &€ > 0. Therefore, lim px (z,) — 0. Finally, by [8, Proposition 3.6.3], we have K is
L-weakly compact.

2. = 3. Follows from of [8, Proposition 3.6.5].

3.= 4. Let T: E — X be a Dunford-Pettis operator. Then T"(Bx-) is an (L) set in E’ where
Bx: is the closed unit ball of X’. Hence, 3. proves that 7"(Bx) is relatively weakly compact, and
then 7" (and T') is weakly compact.

4. = 1. See [2, Theorem 5.102]. O
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A Dunford-Pettis set in E’ is not necessarily relatively weakly compact. In fact, let i: ¢g — £°
be the canonical injection of ¢y into ¢>°. Then i(B,,) is a Dunford-Pettis set in £ (B, is a
Dunford-Pettis set in ¢p), but it is not relatively weakly compact (i: ¢g — £°° is not weakly
compact).

Corollary 3.2. Let E be a Banach lattice such that the norm of E’ is order continuous. Then
any Dunford-Pettis set in E' is relatively weakly compact.

Proof. Let K be a Dunford-Pettis set in E’. By the definition of Dunford-Pettis set, K is an
(L) set in E’. Theorem 3.1 concludes the proof. O

A Banach lattice F is said to be a KB-space whenever every increasing norm bounded sequence
of E* is norm convergent. As an example, each reflexive Banach lattice is a KB-space. It is clear
that each KB-space has an order continuous norm, but a Banach lattice with an order continuous
norm is not necessary a KB-space. In fact, the Banach lattice ¢y has an order continuous norm,
but it is not a KB-space. However, for each Banach lattice FE, its topological dual E’ is a KB-space
if and only if its norm is order continuous.

Let us recal that a Banach lattice F is called a dual Banach lattice if £ = G’ for some Banach
lattice G. A Banach lattice E is called a dual KB-space if F is a dual Banach lattice and FE is a
KB-space.

As a consequence of Theorem 3.1, we obtain the following corollaries.

Corollary 3.3. Let E be a dual Banach lattice. The following statements are equivalent:

1. E is a KB-space.
2. Any (L) set in E is L-weakly compact.
3. Any (L) set in E is relatively weakly compact.

Corollary 3.4. Let E be a dual KB-space. Then any Dunford-Pettis set in E is relatively
weakly compact.
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Proof. Follows from Corollary 3.2. |

In [3] we introduced and used the class of Banach lattices which satisfy the AM-compactness
property. A Banach lattice FE is said to have the AM-compactness property if F satisfies the four
equivalent assertions of Corollary 2.10. For example, the Banach lattice L? [0, 1] does not have the
AM-compactness property, but /! has the AM-compactness property.

Theorem 3.5. Let E be a Banach lattice with the AM-compactness property such that the
norm of E' is order continuous. Then for each Banach space X every Dunford-Pettis operator
T: E— X is compact.

Proof. Let T: E — X be a Dunford-Pettis operator. Since the norm of E’ is order continuous,
it follows from [8, Theorem 3.7.10] that T is M-weakly compact (and then T is weakly compact).
As F has the AM-compactness property, T' is AM-compact. The rest of the proof follows from [8,
Theorem 3.7.4]. O

Corollary 3.6. Let E be a Banach lattice with the AM-compactness property such that the
norm of E' is order continuous. Then any Dunford-Pettis set in E' is relatively compact (and then
the class of Dunford-Pettis sets and that of relatively compact sets in E' coincide).

Proof. By Theorem 3.5, any Dunford-Pettis operator from E to any Banach space X is compact.
We conclude from [5, Theorem 1 and Corollary 1] that any Dunford-Pettis set in E’ is relatively
compact. |

Next, recall from [3] the following sufficient conditions guaranteeing that a Banach lattice has
the AM-compactness property.

Theorem 3.7 ([3]). Let E be a Banach lattice. Then E has the AM-compactness property if one
of the following assertions is valid:



The norm of E is order continuous and E has the Dunford-Pettis property.
The topological dual E' is discrete.

The lattice operations in E' are weakly sequentially continuous.

The lattice operations in E' are weak * sequentially continuous.

Ao =

Let us recall from [8] that an operator T: E — X from a Banach lattice to a Banach space is
said to be M-weakly compact if | T(z,)|| — 0 for every norm bounded disjoint sequence (z,,) in E.

Let us, the lattice operations in E’ are called weak* sequentially continuous if the sequence
(|fn]) converges to 0 in the weak* topology o(E’, E) whenever the sequence (f,) converges to 0 in
o(E',E).

A nonzero element x of a vector lattice E is discrete if the order ideal generated by x equals the
subspace generated by x. The vector lattice F is discrete if it admits a complete disjoint system
of discrete elements.

As a consequence of Theorem 3.5 and Theorem 3.7 we obtain a generalization and another proof
of [4, Theorem 2.2].

Theorem 3.8. Let E be a Banach lattice. Then each Dunford-Pettis operator from E to any
Banach space X is compact if one of the following assertions is valid:

1. The topological dual E' is discrete and its norm is order continuous.

2. The norm of E' is order continuous and the lattice operations in E' are weak* sequentially
continuous.

3. The norms of E and of E' are order continuous.

Proof. 1. If E’ is discrete, then it follows from Theorem 3.7 that the Banach lattice F has
the AM-compactness property. Since the norm of E’ is order continuous, the result follows from
Theorem 3.5.



2. If the lattice operations in E’ are weak® sequentially continuous, then it follows from The-
orem 3.7 that the Banach lattice E has the AM-compactness property. Since the norm of E’ is
order continuous, the result follows from Theorem 3.5.

3. is exactly [8, Theorem 3.7.11(3)]. O

Corollary 3.9. Let E be a Banach lattice. Then any Dunford-Pettis set in E' is relatively
compact if one of the following assertions is valid:

1. The topological dual E' is discrete and its norm is order continuous.

2. The norm of E' is order continuous and the lattice operations in E' are weak* sequentially
continuous.

3. The norms of E and of E' are order continuous.

Corollary 3.10. Let E be a discrete KB-space. Then any Dunford-Pettis set in E is rela-
tively compact (and then the class of Dunford-Pettis sets and that of relatively compact sets in E
coincide).

Proof. Since each discrete KB-space is a dual (see [8, Exercise 5.4.E2]), it is sufficient to use 1.
of Corollary 3.9. O

Corollary 3.11. For an operator T' from a Banach space X into a discrete KB-space F', the
following statements are equivalent:

1. T: X — F is compact.
2. The adjoint T': F' — X' is Dunford-Pettis.

Proof. Since F is discrete KB-space, then T': X — F'is compact if and only if T'( By ) is relatively
compact if and only if T(Bx) is a Dunford-Pettis set in F' (Theorem 3.10) if and only if 7" is a
Dunford-Pettis operator (Remark 4). O
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