PEXIDER TYPE QUARTIC OPERATORS AND THEIR NORMS IN X,
SPACES

ZHIHUA WANG anND LEI LIU

ABSTRACT. In this paper, we introduce linear operators and obtain their exact norms defined on the
function spaces X, and Zg. These operators are constructed from the quartic functional equations
and their Pexider versions.

1. INTRODUCTION

Let X and Y be complex normed spaces. Given A > 0, denote by X, the linear space of all
functions f: X — Y with the condition

I1f (@)l < My el Vz € X,

where My > 0 is a constant depending on f. It is easy to show that the space X is a normed
space if it is equipped with the norm

1£1l := sup {e1|| £ ()]}
reX
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Let us denote by X7 the linear space of all functions ¢: X x --- x X — Y for which there exists
—_——

n times

a constant M, > 0 with

Al

||(p(.’L’1, 7mn)||SMipe =t ) lea‘” ,LL‘nGX.

It is easy to see that the space X} with the norm

A3 il

lell:i=sup {e = lo(z, - za)ll}
ZT1, 0 ,Tn€X

is a normed space. We denote by Z" the normed space @, Xx = {(fi, -, fm):

fi,-+, fm € X} together with the norm

1Cfrs - fn)l = max{{[ fall, -+ [ [}

S. Czerwik and K. Dlutek [1, 2] investigated some properties of Pexiderized Cauchy, quadratic
and Jensen operators on the function space X . These results have extended in the paper [7]. In
fact, M. S. Moslehian, T. Riedel and A. Saadatpour [7] studied the Pexiderized generalized Jensen
and Pexiderized generalized quadratic operators on the function space X, and provided more
general results regarding their norms. S. M. Jung [3] investigated the norm of the cubic operators
on the function spaces Z3. Recently, A. Najati and A. Rahimi [8] introduced Euler-Lagrange type
cubic operators and gave their exact norms defined on the function spaces X, and Z3.



S. H. Lee, S. M. Im and I. S. Hwang [5] considered the following quartic functional equation

fat)+ fo - = 4f (o +v) +af (50 -v)

+oaf (%x) —6f(y).

They obtained the general solution of equation (1.1) and proved the Hyers-Ulam- -Rassias stability
of this equation. Y. S. Lee and S. Y. Chung [6] introduced the following quartic functional equation,

which is equivalent to (1.1),

f@+y)+ fle—y) = af (1x+y) Y (lx_y)

(e - 1)f (1x) —2(a - 1)/ (y)



for fixed integers a with a # 0,+1. Moreover, D. S. Kang [4] introduced the following generalized
quartic functional equation

()i
(1.3) = (ab)? [f (%x 4 %y) +f (%x = %y)]
gs 2a2(a2 — b2)f (%x) — 2b2(a2 - b2)f (%y)

for fixed integers a, b with a,b # 0,a £ b # 0.
Next, we will introduce linear operators which are constructed from the quartic and the Pex-
iderization of the quartic function equations (1.2) and (1.3).

Definition 1.1. The operators Qf, Q% : Z$ — X3 are defined by

Qe+ fo)o) = fia o) fola=)=mfo (seay ) = (o)

— o m? - 1) (%x) T 2(m? — D)fo(y),



Q5+ fo)o) = i (3 + 10) + 1o (32— )

— @ | (ot 25) + 1 (Zo - )]

1 1
9. 20,2 32 A 20 2 12 A
2a°(a” — b%) f5 (abw) +2b°(a” — b%) fs (aby) ,
where a, b and m are fixed integers with a,b # 0,a &b # 0 and m # 0, +1.
Definition 1.2. The operators Q1, Q2 : Xy — X3 are defined by

Qo) i= flo+ )+ fa = 1) = rat ) = mf (o= )

o (m® — 1)f (%x) +2(m? — )f(y),

Quf)o) =1 (§a+3) + £ (50 1)
Go back
1 1 1 1
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—2a%(a® — b?)f (%m) +20%(a® — b2 f (%ZU)
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where a, b and m are fixed integers with a, b # 0,a = b # 0 and m # 0, +1.

In this paper, we will give the exact norms of the operators @1, Q% on the function space Z§
and norms of the operators @)1, Q2 on the function space X.

2. MAIN RESULTS

Throughout this section, a,b and m are fixed integers with a,b # 0,a £ b # 0, and m # 0, £1. In
the following theorems give us the exact norms of operators Q' Q¥ @, and Q-.

Theorem 2.1. The operator Q¥ : Z$ — X3 is a bounded linear operator with
(2.1) QT || = 2m®(m® + 1).
Proof. First, we show that ||QF|| < 2m?(m? + 1). Since it holds that

,||y||} < llz]l + ]

b

1 1
max{||x+y||,||:c—yu, ‘—I—i—y ,H—w—y 1,
m m m

for all x,y € X, we obtain

1QT (1, fo)ll

— sup e A=l+ivD)
z,yeX

A+ )+ falo =)~ o (o)

—m2J (%x _ y) —2m?(m? —1)fs (%x) +2(m® — 1)f6(y)H




< sup e M fi (2 +y) + sup e AT fy(a — )]
z,yeX z,y€

(309
(20
(3

= Al + Ifall + w2l Sl +m?[ fall + 2m*(m? = D)Ifs]l +2(m* — 1)l fs]

+m? sup e

BE ‘
z,yeX

+m? sup e PMEe-vll
z,yeX

+2m?(m? — 1) sup e~ %=l
z€X

\ T 2(m? — 1) sup e~ | f5(3)|
yeX

< 2m*(m® + 1) max{|| full, [ fal, /5], I fall, 151, 0L fa 1}

Go back :2m2(m2+1)”(f1a"' 7f6)||
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for each (f1, -, fo) € Z$. This implies that
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For a fixed v € Y with ||v|| = 1 and a sequence {&,}, of positive real numbers decreasing to 0,

we define
ey, if [lz]| = 26, lz =0 or |lz]| = &y,
(2.3) fal@) = _e2¢ if [z = |14 ~ _ 2
: n\Z —e?Mn if |z|| = |1+ p- &, or |zl = p- &,

0, otherwise

for all z € X. Then we have

62)\671’ if ||IL‘|| =0,
eMen, if ||z|| = &,
1, if ||| = 2¢,,
1
@l mPAn it |l = |1+ — | &,
(2.4) e Mol £ (@) = 1 T
@I mDA it |z = 1 - =&,
m
CRERY: ~ _ 1
€ m ", if ”.’EH = E gna
Go back L 0, otherwise

for all x € X, so that f,, € X for all positive integers n with
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Let u € X be such that |ju|| = 1 and take z,y € X as x = y = £,u. Then it follows from (2.3)

that
19T (fy -+, Fu)ll = Sup e MWD |1 £ (@ + y) + fulz — )
z7y
1 1
- m2fn (—1’ + y) - men (—l‘ - y)
m m
1
(2.6 — 2 = ) () + 200 - )]
> e A 26220 p 4 2m2 ePMn p 4 2(m* — 1) 2o |
=2m?(m? +1).

If we assume that ||QY|| < 2m?(m? + 1), then we can choose a positive constant ¢ with

(2'7) ”Qf(fna T ,fn)H < (2m2(m2 + 1) - E)H(fna T afn)”
for all positive integers n. So it follows from (2.5), (2.6) and (2.7) that
(238) 2m*(m* + 1) <|QT (far -+, fa)ll < @2mP(m? +1) — £) €2

for all positive integers n. Since lim,, ., €**¢» = 1, the right-hand side of (2.8) tends to 2m?(m? +
1) — e as n — oo, whence 2m?(m? + 1) < 2m?(m? + 1) — ¢, which leads to a contradiction. Hence
we have ||QF’|| = 2m2(m? + 1). This completes the proof of the theorem. O

Corollary 2.1. The operator Q1: X, — X3 is a bounded linear operator with
(2.9) Q1] = 2m?(m® +1).




Proof. The result follows from the proof of Theorem 2.1.
The following corollary is a result of Theorem 2.1 for m = 2.

Corollary 2.2. The Peziderized quartic operator QY : Z$ — X3 given by
1 1
QF (e fo)ow) = fila+ )+ falo —9) = 47 (o +u) = 474 (3o - v)

- 2fs (52) +6(0)

is a bounded linear operator with ||QF || = 40.
The following corollary is a result of Corollary 2.1 for m = 2.

Corollary 2.3. The quartic operator Q1: X\ — X3 given by
1 1
Qi(N)(z,y) = flz+y) + fla—y) —4f (§x+y) —4f (ix_y)
~2f (0) +6/0)

s a bounded linear operator with ||Q1]| = 40.
Theorem 2.2. The operator QY : Z$ — X3 is a bounded linear operator with
(2.10) 1QF|| = 2|a* — b*| + 2(ab)? + 2.
Proof. First, we prove that ||QF || < 2|a* — b*| 4 2(ab)? + 2. By the assumption we obtain

1 1 1 1 1
max < |-z £ —y —x+ —y|, || =Y < ||37|| + ||y||
a ab ab

b ab

b

1
—
ab




for all z,y € X. Hence we obtain

193 (f1,--+ , fo)l
11 11
_ sup e~ Mizl+lvl) ‘ " (E””+ _y> L <_m _ _y)
zyeX a b a

— (ab)? [fs (%w + %y) + fa (%w - %y)]

—2(a? — b?) [a2f5 (%x) L (ﬁy)] ’

1 1
< s e (o D)
z,yeX @
+ sup e_)‘H%w_%y” ‘ fo (lx = ly) H
z,yeX b a

+ (ab)?( sup e MZse+35l
z,yeX

f 1 n 1
_x —
3\ ab aby

+ sup e MIZsz—35vl

1 1
Sup fa (W - %”H)

1
+ 2|a? — b?| (a2 sup e Al Hf5 (—x) H + b2 sup e A5l
zeX ab yeX
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= [|fll + lfall + (a@b)* (1 £3]] + Nl fal) + 2a%|a® — &2[[| 5| + 2b%|a® — b|]| fo|
< (2la* — 6% + 2(ab)® + 2) max{[|fu |, | foll, L falls [1£all, N S 1, Nl fell}
= (2la* = 6% +2(ab)* + 2)|(f, -, fo)

for each (f1, -+, fo) € Z3§. This implies that

(2.11) 1QF| < 2|a* — b*| + 2(ab)? + 2.

Let n be a real number such that

1 l-a 1—a 1—a a a
2.12 Sl + .
(2.12) ”¢{0’2’ 1o T14b T b ’1—b’1+b}

Let u € X, v € Y be such that ||u| = ||v|]| = 1 and let {£,}n be a sequence of positive real
numbers decreasing to 0. We define
A(L+In]) - L. 7
e men if x = (= £ 2)&uu,
b a
. 1 n
_ MAHInDEn fo=(—+ 1
(2.13) fn(x) = € £ T (ab ab)'s”u’

2_p2 . 1 n
_% e)‘(1+|77|)5n v, iz = %671“7 or r = Eg‘nuﬂ

0, otherwise




for all z € X. Then we obtain

(2.14)

e Ml (@) =

(L3 +2DAen
eHl—13—2DXen
e(LHmI—1 5+ DAn
e+~ DNen
e(LHl—1 DA
e(HmI—I DA

0,

ifx=(l+ﬂ>§nu,
b a

L n
fo=(7-2)&mn,
if <b a)fu
e (1 n
ifz= (ab + ab) Sntty
. 1 n
1fw—<%—a)§nu,
if —iﬁu
x_abn’
: Ui
fr=—¢&u,
if abfu
otherwise

for all x € X, so that f,, € X for all positive integers n with

(2.15)

[[fnll = max{e

(1+|?7|—|%+§|)>\€n’e(1+|n|—|%—£‘I)>\€n’ e(1+|n|—|ﬁ+é%|)>\én7

15— DAn (=DM ((LIml =I5 DAEn )



Let =,y € X be such that z = &,u and y = n€,u. Then it follows from the definition of f,, that

fi (%x + %y) + f2 (%x - %y)
— (ab)? [fg (%w + %y) + fa (%m - %y)}

—2a%(a® — b?) f5 (%x) + 2b%(a® — b*) fs (%y) H

1QE (far-++ , fu)ll = sup e_)‘(||’”||+||y||)‘
r,yeX

(2.16)

> oMU |26 A DER t 9(gh)2 oA (LHIADER

+ 2(a? + b?)]a? — b2|e A AFMDEn|

= 2|a* — b*| + 2(ab)? + 2.
If on the contrary | QY| < 2|a* — b*| + 2(ab)? + 2, then there exists € > 0 such that
(2.17) QS (frs- -+, fo)ll < (2la* — b +2(ab)® + 2 = )| (fns -+, )
for all positive integers n. So it follows from (2.16) and (2.17) that

2la* — b +2(ab)® + 2 < [|QF (fn, -+ » )l
(2.18)
< (2la* — b +2(ab)®> + 2 — &) || ful



for all positive integers n. Since lim &, = 0, it follows from (2.15) that lim ||f,|| = 1, so the
n—0o0o n—0oo

right-hand side of (2.18) tends to 2|a* — b*| + 2(ab)? + 2 — ¢ as n — oo, whence
(2.19) 2la* — b*| + 2(ab)? + 2 < 2|a* — b*| + 2(ab)® + 2 — ¢,

which is a contradiction. Hence we have ||QF || = 2|a* — b%| + 2(ab)? + 2. This completes the proof
of the theorem. O

Corollary 2.4. The operator Qs: X) — X% 18 a bounded linear operator with
(2.20) Q2| = 2]a* — b*| + 2(ab)* + 2.
Proof. The result follows from the proof of Theorem 2.2. O
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