ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE




Vol. LXXXI, 1 (2012)
p. 141 - 142

A note on mutiplication operators on Köthe-Bochner spaces

S. S. Khurana

Received: September 29, 2011;   Accepted: January 10, 2012



Abstract.   Let (Ω, A, μ) is a finite measure space, E an order continuous Banach function space over μ, X a Banach space and E(X) the Köthe-Bochner space. A new simple proof is given of the result that a continuous linear operator T: E(X) ® E(X) is a multiplication operator (by a function in L¥) iff T(g f, x* > x) =g T(f), x* > x for every g Î L¥, f Î E(X), x Î X, x* Î X*.

Keywords:  Multiplication operator; Köthe function spaces; Köthe-Bochner function spaces.  

AMS Subject classification: Primary:  47B38, 46B42  Secondary:  28A25




PDF                               Compressed Postscript                                 Version to read






Acta Mathematica Universitatis Comenianae
ISSN 0862-9544   (Printed edition)

Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk    Internet: www.iam.fmph.uniba.sk/amuc
© 2011, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE