ON CONTRAVARIANT PRODUCT CONJUGATE CONNECTIONS

A. M. BLAGA

ABSTRACT. Invariance properties for the covariant and contravariant connections on a Riemannian
manifold with respect to an almost product structure are stated. Restricting to a distribution of the
contravariant connections is also discussed. The particular case of the conjugate connection is investi-
gated and properties of the extended structural and virtual tensors for the contravariant connections
are given.

1. PRELIMINARIES

It is known that any covariant connection induces a contravariant one, but not any contravariant
connection is induced by a covariant one [5]. In the present paper, starting with a covariant
connection V on a Riemannian manifold (), g), we shall consider its extension V to 1-forms and
respectively, the contravariant connection V induced by V and discuss invariance properties. If
besides the Riemannian structure g the manifold is endowed with an almost product structure
compatible with g, we will study the product conjugate connections of V and V, and determine
the expressions and the properties of the structural and virtual tensors for them.

Let us point out that if M is a Riemann-Poisson manifold with the Riemannian structure g
(which induces ¢g* on 1-forms) and the Poisson bivector field II, it is known that the anchor map
f: D(T*M) — I(TM), B(ine) = I(, B), o, B3 € T(T*M), and the Koszul bracket [a, f]n =
Ly — Lyppa — d(I(e, B)), «, B € T'(T*M) define a Lie algebroid structure associated to II
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(for the definition of a Lie algebroid, see [9]). The contravariant connections on such manifolds
proved to be important appearing in the context of noncommutative deformations [3], [4], [10].
Defined by I. Vaisman [11], the contravariant connections on Poisson manifolds were intensively
studied by R. Fernandes [2]. If one requires for the contravariant connection to be torsion free and
compatible with ¢g*, then we find the (unique) Levi-Civita contravariant connection associated to
(I1, g*), which is defined by the Koszul formula

29*(V"8,7) = tna(g*(8,7)) + tnBlg* (@, 7)) — tnv(g*(a, B))
+g*([’73 a]Ha /8) + g*([’)la /B]Hv 04) +g*([a7 /8]1'[7 ’Y)a «, 57 ’YGF(T*M)

Let us recall the definition of the contravariant connection on the cotangent bundle of a Rie-
mannian manifold (M,g). We say that V: I'(T*M) x I'(T*M) — T'(T*M) is a contravariant
connection on T*M if V satisfies the following properties:

1. V is R-bilinear;

2. V%8 = fV°B, for any f € C®(M) and a, § € D(T*M);

3. V(£8) = fV B+ t,0(f)B, for any f € C=(M) and a, 8 € [(T*M),
where f, is the inverse of the isomorphism by : I'(T'M) — I(T* M), bg(X) := ixg.

Let E be an almost product structure on the Riemannian manifold (M, g), compatible with g,
that is, g(EX,EY) = g(X,Y), for any X, Y € I'(T'M). Consider V: I'(TM) x I'(TM) — I'(TM)
a covariant connection on M and define the extension of V to 1-forms:

o V:D(TM) x T(T*M) — T(T* M),

' (Vxa)(Y) = X(a(Y)) — a(VxY)
and respectively, the contravariant connection induced by V:

(1.2) V:T(T*M) x I(T*M) - T(T*M), V"B :=V} 0.
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Remark that if V is the Levi-Civita connection associated to g, then V and V are “natural
operators”, meaning that for any isometry f: (M, gy) — (N, gn), it follows that f, o Vy, =
Vo(f.x f.) and respectively, (f)~ 1oV = Vao[(ff) "2 x (f;)~1], where f, : T(TM) — I'(TN),
fo(X) = (f)"toXof* ff:T(T*N) — I'(T*M), fi(a) == f*oao f. and Vy, Vy are the
Levi-Civita connections associated to gas, respectively, to gn.

Let E*: T(T*M) — T(T*M), (E*a)(X) := a(EX) be the dual of E and g*: T'(T*M) x
L(T*M) — C®(M), g* (e, B) := g(#gc,flg3) the Riemannian structure induced by g. Then, for
any «, 8 € I(T*M),

g (o, B) = (iﬂgag)(ﬁgﬁ) = by (#g0) (#48) = a(liyB).

From the compatibility condition of g with E, it follows that for any o € T'(T*M), E(f,(E*a)) =
fya. Indeed, let E(fy(E*a)) =: X, then §,(E*a) = EX and E*a = hy(EX) = igxg. For any
Y € I(TM), (E*a)(Y) = g(EX,Y) is equivalent to o(EY) = g(EX,Y) = g(EX,E%Y) =
9(X,EY) := (ixg)(EY) :=by(X)(EY). It follows a = by(X) and fya = X.

Note that if g is compatible with F, then g* is compatible with E*. Indeed,

9" (E"a, E*B) = g(fy(E @), #g(E"B)) = (E"a)(§4(E"B))
=a(E(#y(E*B))) = g(Hgr, #y8)
=g" (e, B)
for any «, § € T(T*M).

Example 1.1. Consider the particular cases when there exists a certain relation between the
connection V and the almost product structure F, namely, there exists a 1-form 7 such that
VxE = n(X)E, respectively, Vx E = n(X)Ipiray for any X € I'(T'M), where Ip(payy the identity
is map on T'(TM). In the first case, Vx E* = n(X)E* for any X € [(TM), V" E* = n(t,a)E* for
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any o € I'(T*M) and in the second case, VxE* = N(X)Ip(r=ary for any X € T(TM), VeE* =
n(#gc) Ir(r=ary, for any o € I'(T* M), where Ip(p« ) is the identity map on I'(T™M).

2. BASIC PROPERTIES OF CONTRAVARIANT CONNECTIONS

Invariance properties for V and V. If we assume that E is parallel with respect to V (i.e.,
VE = 0) and respectively, if V is a metric connection (i.e., Vg = 0), we shall establish some
invariance properties for V and V.

The following proposition describes the behavior of the extended connection V and of the
contravariant connection V in the case when VE = 0 and respectively, “energy-preserving” [that
is, V leaves invariant the “kinetic energy” K(X) := g(X, X) of the metric g]. It was proved 7]
that a necessary and sufficient condition for a covariant connection to be energy-preserving is that
its symmetric part has to vanish. In particular, it happens if Vg = 0. More exactly, we shall prove
that in this case, the connections V and V commute with the isomorphism £, and V’s extension
to 1-forms, V is energy-preserving, too (with respect to the Riemannian metric g*). Like in the
almost Hermitian case [1], we can state the following proposition.

Proposition 2.1. Let E be an almost product structure on the Riemannian manifold (M, g),
compatible with g and V a covariant connection on M.
1. If E is parallel with respect to V, then E* is parallel with respect to V and V.
2. If Vg =0, then
(a) Vxtga = ﬁg(ﬁxa) for any X € T(TM) and o € T'(T* M) and respectively, Vy oy =
1,(V°B) for any a, B € T(T*M);
(b) Vg* =0 and respectively, Vg* = 0.
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3. If Vg is symmetric, then Tv(a,ﬂ) = by(Tv (g, gB3)) for any o, B € T(T*M), where the
(1,2)-tensor ﬁeliTv is defined Tv(a, B):=V"3 Va- [a, B] for [, B] := bg([Hgcr, 8g/5]).
In particular, TV = 0 if and only if V is torsion free.

From this proposition we deduce that if V is the Levi-Civita covariant connection associated to g,
then V is the Levi-Civita contravariant connection associated to g*, being the unique contravariant
connection satisfying

{ VB - V= [, ﬂLa .
tga(g*(8,7) = g*(V B,7) +g*(8,V 7)

for any «, B8, v € T(T*M).

Fg-connections. For any X,Y € Imf, [assume X =fga, Y =4,06, o, 6 € I(T*M)], it follows
that [X,Y] = #y([e, 8]), so Im 4§, is an integrable distribution whose associated foliation will be
denoted by F, and called the canonical foliation associated to g. If the almost product structure
E is compatible with g, then the distribution Imf, is E-invariant. Indeed, for X € Im#, [assume
X = 40, o € T(T*M)), it follows that EX = E(f,a) = #4(E*a). We say that an arbitrary
contravariant connection V is Fy-connection if a € T'(kert,) implies V"3 € T'(kerf,) for any
B € T(T*M). Following this definition, the contravariant connection V induced by the covariant
connection V is Fg-connection.

Proposition 2.2. Let E be an almost product structure on the Riemannian manifold (M, g),
compatible with g and V a covariant connection on M.

1. If Vg is symmetric, then o € T'(kerfy) implies V’ac I'(kerty) for any g € T(T*M).
2. If Vg =0, then o € T((ker iy)*) implies V'ae I'((kerty)*) for any B € T(T*M).



Proof. 1. Let a € I'(ker ;). Then according to Proposition 2.1,

ﬁg(vﬁa) = —ﬁg(TV(a,ﬂ)) — o[, B]) = Tw (g, #48) — [Hgcr, e8] = 0
for any g € T'(T*M).
2. Let v € I'(ker §,). From Proposition 2.1,
(V' 0,7) = =(Vg*) (8, 0,7) + teB(g" (2, 7)) — 9"(@, V')
= —(V9")(8,,7) + B9 (Hs: ym)) — 9(Hgr §5(V"7)) = 0
for any o, 8 € T'(T*M). O

Restricting to a distribution. Let D € T'M be an arbitrary distribution. Using the isomor-
phism by between the tangent and cotangent bundles, we consider D* C T*M such that

I(D*) :={a eT(T*M) : there exists X € I'(D) such that « = ixg}.
Generalizing the definition for V [8], we say that the extended connection V restricts to D* if
for any o € T'(D*) it implies Vxa € I'(D*) for any X € T'(TM) and respectively, that the

contravariant connection V restricts to D* if for any 3 € T'(D*) it implies V" 8 € I(D*) for any
a € T(T*M). Then:

Proposition 2.3. If V is a metric connection with respect to g and it restricts to D, then v
and V also restrict to D*.

Proof. Let 8 € T'(D*). Then there exists Y € I'(D) such that § = iy g and for any X € T'(T' M)
it follows that _ _
(VxB)(2) = [Vx(ivg)l(Z) = X(9(Y, 2)) = g(Y, Vx Z)
=9(VxY, Z) = (ivxv9)(Z)



for any Z € T'(T'M). Also,
VB =Vy,aB =iv, vg
for any o € T'(T*M). O
Remark that also for any a € [(D*) [assume o = ixg, X € ['(D)], V'a = %ugaa = Vx(ixg) =
Ivyxg € F(D*)

We can also characterize the integrability of the distribution D using the contravariant connec-
tion V in the following way.

Proposition 2.4. Assume that Vg is symmetric. Then the distribution D is integrable if and
only if TV (o, B) € T(D*) for any a, B € T(D*).

Proof. Let o, 8 € I'(D*). Then there exist X, Y € I'(D) such that « = ixg, 3 = iy g. According
to [8], Tv (X,Y) € I(D) is equivalent to f,(TV (a, 3)) € (D) or to TV (a, B) € I'(D*). O

Concerning the invariance of the subspace D} of T M, for z € M, we can remark the following
proposition.

Proposition 2.5. Let x € M and u, v € T, M. Then the endomorphism RY(u,v) of TxM
leaves invariant to the subspace D.

Proof. Let x € M, u, v € T, M and o, € D?. Then there exists w € D, such that a; = i,,gs.
Then according to [8], Ry, (u,v,w) € D,. For any z € T, M

{Ry(um,ax)] (2) i= —az(Rvg(u,v,2))
= _iwgz(RVx(ua v, Z)) = iRvm(u,v,w)gz(z)

and so RY (4,0, Q) = iRg, (uwt, as)de € Dj- O

Moo



3. CONTRAVARIANT PRODUCT CONJUGATE CONNECTIONS

We shall consider

(3.1) VE) .=V 4+ E*VE*, and respectively, vE) =V + E*VE*

which have the following expressions %gf*)a = E*(VxE*a) and v(E*)aﬁ = E*(V"E*j) for any
X eT(T'M) and o, B € T(T*M) and whose properties are stated in the next proposition.
Proposition 3.1. Let E be an almost product structure on the Riemannian manifold (M, g)
and ¥V a covariant connection on M. Then VE") and V(E*) have the following properties:
1. VEVE* = _VE* and V& E* = —VE*;
2.
RV (X,Y,a) = E*(RV(X,Y, E*a))

and . B
RY" " (a,8,7) = E*(RY (a, 8, E*7))

for any X, Y € T(TM) and o, B, v € T(T*M), where the (1,3)-tensor field RV is defined
Iy R¥(,6,7) = V' V9~ V'V - T,
for o, B] := bg([#g, #45]);
3. if E is compatible with the Riemannian metric g, then
(VS 97)(@. ) = (Vx9)(B(ty0), E(ts))

and

TE4)(8,7) = (Vi,09) (E(EeB), E(Ey)




for any X e T(TM) and o, B, vy € T(T*M).

P’I"OOf- 1. (%XE*)Q 0= ﬁxE*a - E*(ﬁxa)

= E*(%gf*)a) = ﬁgf*)E*a = —(%&E*)E*)a
for any X € T(TM) and o € T'(T*M);
B (X, ¥,0) = VE T o~ TG o~ TE
= VB (VyE*a) - V) E*(Vx E*a) — E*(Vix v E*)
= E*(VxVyE*a) — E*(VyVxE*a) — E*(Vix y}E*a)
= B*(RV(X,Y, E*a))
for any X, Y € T'(TM) and o € T(T*M);
> (TE ) 0,8) = X(g"(@,8) ~ 5" (T e, ) 6" (e, TE )
= X(9"(a, B)) — g"(E*(VxE"a), B) — g" (o, E* (VX E*B))
= X(9(E(tsa), E(ts8))) — 9(E(ty(E* (VX E*a))), E(#y5))
— 9(E(tye), E(tg(E*(Vx E*0))))
= X(9(E(fga), E(850))) — 9(Vxig(E" ), E(ty0))
— 9(E(fy), Vxig(E™S))
= (Vxg)(E(ty0), E(y5))
for any X € T'(TM) and o, 8 € T(T*M). _
For V it follows immediately from the properties of V.

)_
)_

il



Example 3.1. Let n€I'(T* M) such that Vx E=n(X)E for any X eT'(T'M). Then %FXZE*)E* =
—n(X)E* for any X € D(TM), V" *E* = —y(t,a)E* for any a € D(T*M). If VxE =

nN(X)Ir(rar for any X € T(TM), then egf*)E* =—n(X) I+ for any X e (T M), vE g =
—n(8g) Ir(+pr), for any o € T(T*M).

o = o . =(E") . .
Remark that if V is F,-connection, the V( ) is also Fg-connection, because for f,a = 0, we

have #,(V" )% B) = t,(E*(VE*B)) = E(t,(V E*B)) = 0 for any 8 € D(T*M).

Assume now that V is a metric connection and the arbitrary distribution D is E-invariant [that
is for any X € I'(D), it follows EX € ['(D)]. If V restricts to D, then V(E") and v also
restrict to D*. Indeed, let a € T'(D*). Then there exists X € I'(D) such that « = ixg. But
for any Y € T'(TM), (E*a)(Y) := a(EY) = g(X,EY) = g(EX,Y) = (igxg)(Y), so E*a €

I'(D*). Therefore, from Proposition 2.3 for any X € I'(T'M), VxE*a € I'(D*) and consequently,

%gf*)a = E*(VxE*a) € T(D*). A similar argument holds for v,

4. THE EXTENDED STRUCTURAL AND VIRTUAL TENSORS FOR V AND V

Recall that the deformation tensor by passing from a metric g to f*g, where f is a geodesic
transformation preserving the almost product structure E [6], can be written

T(V)(X,Y) = $(X)Y +¥(Y)X, X,Y € [(TM)

for ¢p € I'(T* M) and V the Levi-Civita connection is associated to g. In this case [6], the structural
tensor is defined

(4.1) C(X,Y) := Z[(VexE) + (VxE)EY],  X,Y e (TM)

N | =
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and respectively, the virtual tensor by
1
(4.2) B(X,Y) := 5[(VEXE)Y — (VxE)EY], X, Y eT(TM).

Denote by V’ the Levi-Civita connection is associated to f*g and %, v , V, V' the extensions
and respectively, the contravariant connections are induced by V and V’. Similarly we can compute
the deformation tensors for V and V, so we get

[T(V)(X,8)] (¥) = —BITV)(X, )] = -B(X)Y +%(V)X],
[T(T) (e, )] (V) = =BIT(V)(Hg, V)] = =Bl (Eg0)Y + $(¥)tg0]
for any X, Y €e I(TM) and o, 3 € I'(T*M). Then
(V3E")8] (V) = (VxE9)8I(Y) - B (Y) EX — $(BY)X],
(VB8] (V) = (T E")BIY) - BIu(Y)E(tga) - w(BY )iyl
for any X,Y € I(TM) and o, § € D(T*M).

Proposition 4.1. The extended structural and virtual tensors (defined for v, V', V, v )
satisfy:
L [B'(X,8)(Y) = [BX,0)(Y),  [B'(aB)(Y) = [Bla, D)Y);
2. [C"(X, B)I(Y) = [C(X, B)(Y) = Bl(Y)X — p(EY)EX],
[C" (e, DY) = [Cle, HUY) = B(Y ) — Y(EY) E(§g00)]
forany X, Y e T(TM) and o, 5 € T(T*M). Moreover, the extended structural tensor satisfies

X
X

B
@



Notice that

[C’(EX, m] (V) = B(B(EX,Y)),

[C(X,E"8)] (V) = B*B(B(X,Y))
for any X, Y e I'(TM), B e I(T*M).
Concerning VE) and v(E*), remark also that
CFI)(x,8)=-C(X,8), B¥)(X,B)=-B(X,8),
CF N, ) =-C(a,8), B¥)(a,8)=—B(a, )

for any X € I'(TM) and «, 8 € T(T*M).
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