CURVES WHOSE SECANT DEGREE IS ONE
IN POSITIVE CHARACTERISTIC

E. BALLICO

ABSTRACT. Here we study (in positive characteristic) integral curves X C P” with secant degree one,
i.e., for which a general P € Sec*~!(X) is in a unique k-secant (k — 1)-dimensional linear subspace.

1. INTRODUCTION

Let K be an algebraically closed base field. Let X C P" be an integral and non-degenerate closed
subvariety. For each z € {0,...,r}, let G(x,r) denote the Grassmannian of all z-dimensional linear
subspaces of P”. For each integer k& > 1 let 03 (X) denote the closure in P" of the union of all
A € G(k—1,r) spanned by k points of X (the variety oy (X) is sometimes called the (k — 1)-secant
variety of X and written Sec®*™'(X), but we prefer to call it the k-secant variety of X). The
integral variety oy (X) may be obtained in the following way. Assume that X is non-degenerate.
For any closed subscheme E C P" let (E) denote its linear span. Let V (X, k) C G(k—1,r) denote
the closure in G(k — 1,7) of the set of all A € G(k — 1,r) spanned by k-points of X. Set

S[X,k] = {(P,A) € P" x G(k—1,r): P € A, A € V(X,k)}.

Received May 22, 2011; revised November 3, 2011.

2010 Mathematics Subject Classification. Primary 14N05; 14H50.

Key words and phrases. Join; secant variety; rational normal curve.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).



Let p1: P" x G(k — 1,7) — P" denote the projection onto the first factor. We have o (X) =
p1(S[X, k]). Set mx x := p1)sx,x)- If ok(X) has the expected dimension & - (dim(X) +1) —1 (i,
if mx i, is generically finite), then we write i5x(X) for the inseparable degree of mx , and s,(X)
for its separable degree. For any P € X,es, let Tp.X C IP" denote the tangent space to X at P. If
k > 2, we say that X is k-unconstrained if

dlm(<Tp1X Uu-.-u Tka>) = dlm(ok(X))
for a general (P, ..., Py) € X*. Terracini’s lemma says that
dim((Tp, X U---UTp, X)) < dim(o(X)))

and that in characteristic zero equality always holds ([1, §1] or [3, §2]). The case k = 2 of this
notion was introduced in [3]. A non-degenerate curve Y C PP” is 2-unconstrained if and only if either
r =2 or Y is not strange [3, Example (el) at page 333]. From now on we assume dim(X) = 1.
We first prove the following result.

Theorem 1. Fix integers r > 2k > 4. Let X C P" be an integral, non-degenerate and

k-unconstrained curve. Then si(X) = 1.

For each integer ¢ such that 2 < 2i < r we define the integer e;(X) in the following way. Fix a
general (Py,...,P;) € X'. Thus P; € X,eq for all j. Set V := (I'p, X U---UTp,X). Notice that
(VN X)red 2 {P1,- .., P;} and the scheme VN X is zero-dimensional. Varying (P, ..., P;) in X* we
see that each P; appears with the same multiplicity in the zero-dimensional scheme V' N.X. We call
e;(X) this multiplicity. In characteristic zero we always have e;(X) = 2. The integer e;(X) is the
intersection multiplicity of X with its general tangent line at its contact point. Hence if char(K) is
odd the curve X is reflexive if and only if e (X) = 2 ([4, 3.5]). In the general case we have e; (X) > 2
and e;(X) < e;41(X). For any P € X,., and any integer t € {1,...,7}, let O(X, P, t) € G(t,r)
denote the ¢t-dimensional osculating plane of X at P. Thus O(X, P,1) = TpX. Fix integers ¢ > 1,



and j, > 0,1 < h < i. We only need the case 2+, _, j» < r. Fix a general (P,...,P;) € X’ and
set V := (Ui _,O(X, Py, 1+ jp)). For any h € {1,...,i}, let E(X;4;41,...ji; k) be the multiplicity
of Py in the scheme V' N X. We will only use the case j; = 1 and j, = 0 for all h # 1. If either
char(K) = 0 or char(K) > deg(X), then E(X;é;71,...Ji;h) = 2 + j, (Lemma 9). Here we prove
the following result.

Theorem 2. Let X C P?*=1 k > 2, be an integral, non-degenerate and k-unconstrained curve.
Set j1 :=1 and jp :=0 for all h € {2,...,k —1}.
(a) If sp(X) =1 and E(X;k—1;41,...,Jk—1;1) = ex—1(X) + 1, then X is smooth and rational
and deg(X) = (k — 1)eg_1(X) + 1.
(b) X is a rational normal curve if and only if sp(X) = 1, ex—1(X) = 2 and E(X;k — 1;
jl,. ° ~7jk—1; 1) = 3.
We do not know if in the statement of Theorem 2 we may drop the conditions “ej_1(X) = 2”
and “BE(X;k —1;71,...,Jk—1;1) = 3”. We are able to prove that we may drop the first one in the
case k = 2, i.e., we prove the following result.

Proposition 1. Let X C P? be an integral and non-degenerate curve. The following conditions
are equivalent:

(a) X is not strange, $3(X) =1 and E(X;1;1;1) = e1(X) + 1;

(b) i2(X) =52(X) =1 and E(X;1;1;1) = e1(X) + 1;

(¢) X is a rational normal curve.

The picture is very easy if char(K) > deg(X). As a byproduct of Theorem 2 we give the
following result.

Theorem 3. Let X C P?*~! be an integral and non-degenerate curve. Assume char(K) >
deg(X). X is a rational normal curve if and only if s, (X) = 1.
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2. THE PROOFS

Remark 1. Assume X of arbitrary dimension and that
dim(oy(X)) = k(dim(X) + 1) — 1.
As in [3] (the case k = 2) X is k-unconstrained if and only if ix(X) = 1.

Lemma 1. Fizintegersc>0,s >y > 2 andr > s(c+1)—1. Let X C P" be an integral and non-
degenerate c-dimensional subvariety such that dim(os(X)) = s(c+1) —1. If X is s-unconstrained,
then X is y-unconstrained.

Proof. Since dim(o4(X)) = s(c+ 1) — 1 and X is s-unconstrained, we have
dim((Tp, XU ---UTp X)=5s(c+1)—1

for a general (Py,...,P;) € X°. Hence dim({(Tp, X U---UTp (X)) = y(c+ 1) — 1. Hence X is
y-unconstrained. |

We recall the following very useful result ([1, §1]).

Lemma 2. Let X C P" be an integral and non-degenerate curve. Then X is non-defective, i.e.,
dim(c4(X)) = min{r, 2a — 1} for all integers a > 2.

From Lemmas 1 and 2 we get the following result.

Lemma 3. Fix integers s >y > 2 andr > 2s—1. Let X C P” be an integral and non-degenerate
curve. If X is s-unconstrained, then X is y-unconstrained and not strange.

We recall that a finite set S C P* is said to be in linearly general position if dim((S")) =
min{z, §(S") — 1} for every S’ C S. The general hyperplane section of a non-degenerate curve
X C P" is in linearly general position if X is not strange ([6, Lemma 1.1]). Hence Lemma 3
implies the following result.



Lemma 4. Fizx integers r,s such that r > 2s —1 > 3. Let X C P" be an integral and
non-degenerate curve. Assume that X is s-unconstrained. Then X is not strange and a general
hyperplane section of X is in linearly general position.

Proof of Theorem 1. We extend the proof of the case k = 2 given in [3, §4]. By Lemma 4
a general (k — 1)-dimensional k-secant plane of X meets X at exactly k points. Fix a general
(P1,...,Py) € XFand set V := (Tp, XU---UTp,). Since X is k-unconstrained, we have dim(V) =
2k — 1. Since 2k — 1 < r and X is non-degenerate, the set S := (V' N X),q is finite. Fix a general
P e {Pi,...,B;}). Assume s5(X) > 2. Since a general hyperplane section of X is in linearly
general position (Lemma 4), the integer s;(X) is the number of different k-ples of points of X
such that a general point of 0% (X) is in their linear span. Since P may be considered as a general
point of o(X) and six(X) > 2, there is (Q1,...,Qx) € X* such that P € ({Q1,...,Qx}) and
{P1,...., Py} #{Q1,...,Qr}. For general P we may also assume that (Q1,...,Qy) is general in
X%, Hence each P; and each @, is a smooth point of X. Terracini’s lemma gives (Tp, X U---U
Tp, X) C Tpog(X) and (T, X U---UTg, X) C Tpog(X). Since X is k-unconstrained and both
(P1,...,P) and (Q1,...,Qx) are general in X*, we have (Tp, X U---UTp,) = Tpor(X) and
(Tg, X U---UTg, X) = Tpog(X). Hence {Q1,...,Qr} C S. Since S is finite, the union of the
linear spans of all S” C S with #(S") = k is a finite number of linear subspaces of dimension at
most k — 1 and (S) = ({P1,...,P}) if and only if S" = {Py,..., Py}, because ({Py,...,Py}) N
X ={P,...,P;}. Hence dim((S") N {{P1,...,Px})) <k —2forall S’ # {Py,...,Py}. Varying
Pe({P,...,P.}) = P*! we get a contradiction. O

Lemma 5. Let X C P, r > 2k — 1 > 5, be an integral, non-degenerate and k-unconstrained
curve. Fiz an integer s such that 1 < s < k — 2. Fiz a general (Ay,...,As) € X° and set
W = (Ta, X U---UTq X). Then dim(W) = 2s — 1. Let by : P"\ W — P25 denote the
linear projection from W. Let Y C P"=2% denote the closure of by (Y \ Y N W). Then Y is
(k — s)-unconstrained and it is not strage.



Proof. Fix a general Ag,1,..., A € X¥7%. Notice that (fy(Asi1),---,lw(Ag)) is general in
Y*=5 and

ew((WUTAS+1X J--- UTAkX> \ W) = <T£W(As+1)Y U--- UTgW(Ak))Y>.

Hence the latter space has dimension 2k—2s—1. Hence Y is (k— s)-unconstrained. Since k—s > 2,
Y is not strange. ]

Lemma 6. Fiz integers ¢ >0, k> 2 andr > (c+ 1)k — 1. Let X C P" be a k-unconstrained
c-dimensional variety such that dim(og (X)) = (c+ 1)k — 1. Fiz an integer s € {1,...,k — 1} and
a general (Py,...,P;) € X5. Set V := (Tp, X U---UTp X). Then dim(V) = (c+ 1)s — 1 and the
restriction to X of the linear projection fy: P"\'V — Pr—(ctDs s o generically finite separable
morphism.

Proof. Since s +1 < k and dim(ox(X)) = (¢ + 1)k — 1, we have dim(os(X)) = (c+ 1)s — 1.
Lemma 1 gives that X is s-unconstrained. Since X is (s + 1)-unconstrained and dim(os41(X)) =
(c+1)(s+1) — 1, we have

dim((V U TpX)) = dim(V) + dim(TpX) + 1

for a general P € X, i.e., VNTpX = () for a general P € X. Thus ¢y |(X \ V) has differential with
rank ¢, i.e., it is separable and generically finite. O

Proof of Theorem 2. If X is a rational normal curve, then it is k-unconstrained, s;(X) =1 (]2,
First 4 lines of page 128]) and (X ) = 1 (Remark 1).

Now assume sg(X) = 1. In step (¢) we will use the assumption E(X;k — 1;
1,0,...,0;1) = ex_1(X) + 1. We need to adapt a part of the characteristic zero proof given
in [2] to the positive characteristic case. We will follow [2] as much as possible. Fix a general
(P1,...,Pr_1) € X*Tandset V:= (I'p, XU---UTp,_, X). Since X is k-unconstrained, we have
dim (V') = 2k — 3. Since X is non-degenerate, the set S := (V N X),eq is finite.
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(a) Here we check that S C X,eg. If k = 2, then for a general P; we have T'p, X NSing(X) = 0,
because X is not strange by [3, Example (el) at page 333]. Now assume k > 3. Since X is not
strange (use Lemma 1), for general P; € X, we have Tp, XNSing(X) = (). Then by induction on i we
check using a linear projection from Tp, X as in Lemma 5 that (Tp X U -+ UTp, X) N Sing(X) =0
(more precisely, for any finite set ¥ C X we check by induction on ¢ that (T, XU---UTp, X)N3 = ()
for a general (Pi,...,P;) € X'). For i =k — 1 we get S C Xyeq.

(b) Obviously {Pi,...,Py,—1} € S. Here we check that S = {Py,...,P;_1}. Assume for
the moment the existence of @ € S\ {Pi,...,Px_1}. Since X is not strange, it is not very
strange, i.e., a general hyperplane section of X is in linearly general position ([6, Lemma 1.1]).
Since (Pi,...,Py_1) is general in X*~! we get ({P,...,Pr_1})NX = {P,...,P,_1}. Thus
dim(({Py,..., Pr—1,Q})) = k — 1. Fix a general z € ({Py,..., Py_1,Q}). We have

P! = T,04(X) D (Tp, X U---UTp,_, X UTpX)

(Terracini’s lemma ([3, §2] or [1, Proposition 1.9]). The additive map giving Terracini’s lemma for
joins in the proof of [1, Proposition 1.9], shows that the map mx ; has non-invertible differential
over the point z. Since P?*~! is smooth and m X,k is separable, we get that mx ; is not finite of
degree 1 near z. Since si(X) = 1, mx j contracts a curve over z. Since z lies in infinitely many
(k — 1)-dimensional k-secant subspaces, we get that dim (o (X)) < 2k — 2, contradicting Lemma
2. The contradiction proves S = {Py,..., Px_1}.

(c) Step (b) means that {Pi,..., P;,_1} is the reduction of the scheme-theoretically intersec-
tion X N V. Let Z; denote the connected component of the scheme X NV supported by P;. Set
e := deg(Zy). Since Tp, X C V, we have e > 2. Varying (Py,..., P;_1) in X*~! we get deg(Z;) = ¢
for all i. The definition of the integer e;_1(X) gives e = ex_1(X). Set ¢ := Ly |(X \ VN X). Since
XNV C Xyeg, ¢ is dominant and X, is a smooth curve, ¢ induces a finite morphism ¢: X — P*.
Bezout’s theorem gives deg(X) = (k — 1)e + deg(s). Lemma 6 gives that ¢ is separable. Hence



deg(v)) is the separable degree of . Assume deg(y)) > 2. Since P! is algebraically simply con-
nected, there is Q € X at which ¢ ramifies.

First assume @ € X,.,. Since E(X;k —1;1,0,...,0;1) = ex_1(X) + 1, ¢ is not ramified
at P,. Moving Pj,...,Py_1 we get Q ¢ {Pi,...,P;_1}. The definition of ¢ gives dim(V U
ToX) < dim(V) + 1. Hence the additive map giving Terracini’s lemma for joins in the proof of [1,
Proposition 1.9], shows that the map mx j, has non-invertible differential over the general point
z€ ({P1,...,Py_1,Q}). As in step (b) we get a contradiction.

Now assume @ € Sing(X). Let u: C — X denote the normalization map. Since we assumed
deg(v)) > 2, we have deg(t o u) > 2. Since P! is algebraically simply connected, there is Q' € C
such that 1 o u is ramified at @’. We repeat the construction of joins and secant variety starting
from the non-embedded curve C and get a contradiction using @’ instead of Q). Thus deg(¢)) = 1,
ie.

deg(X) = (k — Dex_1(X) +1,
and X is rational.

X is a rational normal curve if and only if deg(X) = 2k — 1, i.e., if and only if e = 2. Take
any P € Sing(X) (if any). Set H := ({P} U V). Since X is singular at P, we have deg(H N X) >
2+ (k—1)e > deg(X), that is contradiction. Thus X is smooth. O

Proof of Proposition 1. We have i3(X) = 1 if and only if X is 2-unconstrained ([3] or Remark
1). Obviously X is 2-unconstrained. Hence it is sufficient to prove that if X is 2-unconstrained,
s2(X) =1, and E(X;1;1;1) = e1(X) + 1, then X is a rational normal curve. Theorem 2 says that
X is smooth and rational and deg(X) = e;(X)+1. Thus it is sufficient to prove e; (X) = 2. Assume
e1(X) > 3. Since deg(X) = e1(X) + 1, Bezout’s theorem says that any two different tangent lines
are disjoint. Let TX C P? denote the tangent developable of X. Fix a general P € P3 and
let £p: P3\ {P} — P? be the linear projection from P. Set ¢ := ¢p|X. Since P ¢ TX, { is
unramified. Since X is smooth, s2(X) = 1 and P is general, the map £ is birational onto its image



and the curve ¢(X) has a unique singular point (the point £(P;) = ¢(P;) with P € ({Py, P»}) and
(Py, Py) € X?). We have p,(¢(X)) = e1(X)(e1(X) —1)/2 > 2. Since P ¢ TX, we have P ¢ Tp, X,
i =1,2. Since Tp, X NTp,(X) = 0, the line Tp, X is not contained in the plane ({P} U Tp X).
Thus ¢p(Tp, X) # ¢p(Tp,X). Thus ¢(P;) is an ordinary double point of £(X). Hence ¢(X) has
geometric genus p,(X) — 1 > 0, thath is contradiction. O

Lemma 7. Let X C P be an integral and non-degenerate curve. Assume char(K) > deg(X).
Then e;(X) = 2 for all positive integers i such that 21 < r.

Proof. We have e;(X) = 2, because in large characteristic the Hermite sequence of X at its
general point is the classical one ([5, Theorem 15]). The case ¢ > 2 is obtained by induction on i
taking instead of X its image by the linear projection from 7'», X, P; general in X. ]

Lemma 8. Let X C P" be an integral and non-degenerate curve. Assume char(K) > deg(X).

Then X 1is i-unconstrained for all integers i > 2.

Proof. Fix a linear subspace V' C P" such that v := dim(V) <r — 2. Let £y : PT\V — Pr—v-!
denote the linear projection from V. Since char(K) > deg(X), the restriction of ¢y to X is
separable. Hence Tp, X NV = ) for a general P, € X. Take V = (Tp, X U---UTp, , X) with
(Py,...,P;_1) general in X*~! and use induction on i. O

Lemma 9. Let X C P" be an integral and non-degenerate curve. Assume char(K) > deg(X).
Then E(X;i;51,...,Ji;h) = 2+ g, for all i,j1,...,7; such that

K3
24+ ja<r
=1
and for a general (Py,...,P;) € X?, the linear span of the osculating spaces
O(X7Pm71+jm) 1<z <4,



has dimension 2i — 1 + Z;zl Ja-

Proof. The case i = 1 is true by [5, Theorem 15|. Hence we may assume ¢ > 2. Fix an index
ce{l,...,i} \ {h}. For a general P. € X, the point P. appears with multiplicity exactly j. + 2
in the scheme O(X, P.,j. + 1) ([5, Theorem 15]). Since char(K) > deg(X), the rational map
¢ obtained restricting to X the linear projection from O(X, P.,1 + j.) is separable. Call Y the
closure in P" =92 of ¢(X \ O(X, P,1+ j.) N X). Take P,, = # c, such that (P,..., P;) is general
in X¢ and write Q, := £(P,) for all x # c. Let V be the linear span of the osculating spaces
O(X, P;,1+j:), 1 <x < i, U the linear span of the osculating spaces O(X, P;, 1+ j),  # ¢, and
W the linear span of the osculating spaces O(Y, Q., 1+ j,),  # c. By the inductive assumption U
and W have dimension 2i —3+ 3", j,. Hence £(U) = W and dim(V) = 2i — 1437/ _, j,. Since
the points (); are general and / is separable, the scheme ¢7((2 + j.)Q.)), = # ¢, is a divisor of X
whose connected component supported by P, has degree 2 + j,. Use the inductive assumption on
Y to get E(X;4;01,--,7i5h) =2+ j. O

Proof of Theorem 3. Apply Theorem 2 and Lemmas 7, 8 and 9. O
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