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CONTINUITY WITH RESPECT TO DATA AND PARAMETERS
OF WEAK SOLUTIONS TO A STEFAN-LIKE PROBLEM

A. MUNTEAN

Abstract. We study a reaction-diffusion system with moving boundary describing

a prototypical fast reaction-diffusion scenario arising in the chemical corrosion of

concrete-based materials. We prove the continuity with respect to data and parame-
ters of weak solutions to the resulting moving-boundary system of partial differential

equations.

1. Introduction

Recently we have established the existence and uniqueness of weak solutions to
a two-phase reaction-diffusion system with a free boundary where an aggressive
fast reaction is concentrated; see [12, 13] for these results and [9] for a larger
picture of the chemical corrosion issue motivating this work – the concrete car-
bonation problem. Details about the chemo-physical problem, its civil engineering
importance as well as some aspects of what mathematics can say concerning the
prediction of the speed of the involved deterioration mechanism are reported in
[10]. Within this framework, we focus on the continuity with respect to data and
parameters of weak solutions to the mathematical model in question. It is worth
mentioning that relatively general results on continuous dependence of solutions
of scalar Stefan-like problems were proved in the past by several authors (see, for
instance, [3, 6, 2, 1] and [17]). Particularly, we mention the contributions by
Mohamed [14] and Pawell [16] who study the continuous dependence problem for
(scalar) moving-boundary descriptions of some non-corrosive chemical reactions
taking place in concrete. Since here we deal with a non-linearly coupled system of
semi-linear parabolic PDEs in two moving a priori unknown phases, whose motion
is driven by a non-equilibrium moving-boundary condition of kinetic type, none of
these formulations seem to be applicable. The working framework we have chosen
to prove the stability estimate is that one prepared in [13].
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This note is organized in the following fashion: In Section 2, we present the
moving-boundary system and shortly comment on the underlying physics. Pre-
liminary technical information (like function spaces used, our concept of weak
formulations, review of known basic estimates, a local existence and uniqueness
result for weak solutions) is detailed in Section 3. We state the main result (that
is Theorem 4.1) in Section 4 and prove it in Section 5.

2. The moving-boundary problem

We investigate the moving-boundary problem of finding the vector of concentra-
tions (ū1, . . . , ū6)t and the interface position s(t) which satisfy for all t ∈ ST :=
]0, T [ (0 < T <∞ fixed) the equations

(φφwūi),t + (−Diνi2φφwūi,x)x = fi,Henry, x ∈]0, s(t)[, i ∈ {1, 2},
(φφwū3),t + (−D3φφwū3,x)x = fDiss, x ∈]s(t), L[

(φφwū4),t = fPrec + fReacΓ, x = s(t) ∈ Γ(t),
(φū5),t + (−D5φū5,x)x = 0, x ∈]0, s(t)[,
(φū6),t + (−D6φū6,x)x = 0, x ∈]s(t), L[,

(2.1)

φφwνi2ūi(x, 0) = ûi0(x), i ∈ I := I1 ∪ I2, x ∈ Ω(0),(2.2)

φφwū4(x, 0) = û40(x), x ∈ Ω(0),(2.3)

φφwνi2ūi(0, t) = λi(t), i ∈ I1 := {1, 2, 5},(2.4)

ū5(s(t), t) = ū6(s(t), t),(2.5)

ūi,x(L, t) = 0, i ∈ I2 := {3, 6},(2.6) 
[j1 · n]Γ(t) = −η̃Γ(s(t), t) + s′(t)[φφwū1]Γ(t),

[ji · n]Γ(t) = η̃Γ(s(t), t)δ5i + s′(t)[φφwνi2ūi]Γ(t), i ∈ {2, 5, 6},
[j3 · n]Γ(t) = −η̃Γ(s(t), t) + s′(t)[φφwū3]Γ(t),

(2.7)

and

s′(t) = α
η̃Γ(s(t), t)

φφwū3(s(t), t)
=: ψ̃Γ(s(t), t), s(0) = s0 > 0.(2.8)

In (2.7), n is the outer normal to the interface Γ(t), while [A]Γ(t) denotes the jump
in the quantity A across Γ(t). For fixing ideas, we assume that the only relevant
chemistry intervening here is the so called carbonation reaction (details are given
in [4, 9] and references cited therein), that is

CO2(g → aq) + Ca(OH)2(s → aq) → CaCO3(aq → s) + H2O.(2.9)

In this framework, ū1 and ū2 denote the aqueous and respectively gaseous CO2

concentrations, ū3 is the concentration of dissolved Ca(OH)2, ū4 is the immobile
rapidly precipitating species (here: CaCO3(aq)), while ū5 and ū6 point out the
moisture concentrations (produced via (2.9)) within ]0, s(t)[ and ]s(t), L[, respec-
tively. The process can be briefly described as follows: Molecules of atmospheric
CO2 penetrate concrete structures via the air-filled parts of the pores (see Fig. 1),
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dissolve in pore water where they meet a lot of aqueous Ca(OH)2 ready to react
via (2.9). There is chemical evidence [4] showing that (2.9) is sufficiently fast so
that the two spatial supports of the reactants (CO2(aq) and Ca(OH)2(aq)) are
separated by a sharp interface positioned at x = s(t).

Figure 1. Complete separation of reactants in the carbonation process. The task is to predict

the depth at which CO2 is able to penetrate until a given time t ∈ ST .

Remark 2.1. The complete segregation of the reactants and the fact that for
this reaction-diffusion scenario the associated Thiele modulus is much larger than
unity motivates us to apply a moving-boundary strategy in order to predict the
penetration of front (here – a sharp interface) of CO2 in concrete. Conceptually
similar reaction-diffusion problems with fast reaction and relatively slow transport
arise, for instance, in geochemistry [15].

Furthermore, ν12 = ν32 := 1, ν22 := φa

φw
, ν52 = ν62 := 1

φw
, νi` := 1 (i ∈ I, ` ∈

I − {2}), δij (i, j ∈ I) is Kronecker’s symbol, ji := −Diνi`φφwūi (i, ` ∈ I1 ∪ I2)
are the corresponding effective diffusive fluxes and α > 0. The parameters Di, L
and s0 are assumed to be constant and strictly positive; the boundary data λi are
prescribed in agreement with the environmental conditions to which Ω =]0, L[ –
a part of a concrete sample – is exposed. The interior boundary conditions (2.7)
are derived using an argument based on the pillbox lemma; see [7]. Following [18]
(and subsequent papers, e.g., [5]), equation (2.8) represents a non-equilibrium type
of free boundary condition that is called kinetic condition. For a derivation via
the first principles of (2.8) for this particular reaction-diffusion setting, we refer
the reader to [10, Section 2.3.1].

The initial conditions ûi0 > 0 are determined by the chemistry of the cement.
The hardened mixture of aggregate, cement and water determines numerical ranges
for the porosity φ > 0 and also for the water and air fractions, φw > 0 and
φa > 0. In this paper, we set φ, φa and φw to be constant. The productions terms
fi,Henry, fDiss, fPrec and fReacΓ are sources or sinks by Henry-like interfacial
transfer mechanisms (see [8] for a related application of Henry’s law), dissolution,
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precipitation, and carbonation reactions. We assume
fi,Henry := (−1)iPi(φφwū1 −Qiφφaū2)

(Pi > 0, Qi > 0), i ∈ {1, 2},

fDiss := −S3,diss(φφwū3 − u3,eq),
S3,diss > 0, fPrec := 0, fReacΓ := η̃Γ.

(2.10)

In (2.10), η̃Γ(s(t), t) denotes the interface-concentrated reaction rate. It is de-
fined in the following fashion: Let ū = (ū1, . . . , ū6)t be the vector of concentrations
and MΛ the set of parameters Λ := (Λ1, . . . ,Λm)t chosen to describe the reaction
rate. We assume that MΛ is a non-empty compact subset of Rm

+ . We introduce
the function

(2.11)
η̄Γ : R6 ×MΛ → R+

by η̄Γ(ū(x, t),Λ) := kφφwū
p
1(x, t))ū

q
3(x, t), x = s(t).

In (2.11), m := 3 and Λ := {p, q, kφφw} ∈ R3
+. We define the reaction rate

η̃Γ(s(t), t) by

η̃Γ(s(t), t) := η̄Γ(ū(s(t), t),Λ),(2.12)

where η̄Γ is given by (2.11) and represents the classical power-law ansatz. Note
that some mass-balance equations act in ]0, s(t)[, while other act in ]s(t), L[ or
at Γ(t). All of the three space regions are varying in time and they are a priori
unknown. The system (2.1)–(2.12) forms the sharp-interface carbonation model.

Remark 2.2.
(i) The local existence and uniqueness of weak solutions to the sharp-interface

carbonation model was reported in [13, Theorem 3.3], while the global
solvability was addressed in [13, Theorem 3.7]. In this paper, we show
the continuity of the weak solution to (2.1)–(2.12) with respect to initial
data, boundary data and model parameters. The importance of our result
is twofold: (1) On one side, we complete the well-posedness study of (2.1)–
–(2.12), which has been started in [13]. (2) On the other side, we prepare a
theoretical framework for numerically testing the stability with respect to
model parameters. Note that for the carbonation problem many important
material parameters are typically unknown. Our stability estimates suggest
that there is a little place of “playing games” with the most critical param-
eters, i.e. those entering (2.8), e.g. It is worth mentioning that unsuitable
choices of reaction rates (and hence, of velocities) may produce the blow
up in concentration near the interface position (like in [11], e.g.).

(ii) The strategy of the proof is the following: We subtract the weak formulation
written in terms of two different solutions compared within the same time
interval ST . In order to obtain the desired result, we make use of a lot of
a priori knowledge of the solution behavior. In particular, we essentially
rely on positivity and L∞ bounds for all involved concentrations (cf. [13,
Theorem 4.2]) as well as energy estimates (cf. [13, Lemma 4.3]) the weak
solutions to (2.1)–(2.12). The result is obtained by conveniently applying
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Gronwall’s inequality in combination with an interpolation inequality as
well as with some particular algebraic inequalities tailored to deal with the
special non-linearities induced by Landau-like transformations.

3. Technical preliminaries

3.1. Fixing the moving boundary

We take advantage of the 1D geometry and immobilize the moving boundary via
the fixed-domain transformations (also called Landau’s transformations)

(x, t) ∈ [0, s(t)]× S̄T 7−→ (y, t) ∈ [a, b]× S̄T , y =
x

s(t)
, i ∈ I1,(3.1)

(x, t) ∈ [s(t), L]× S̄T 7−→ (y, t) ∈ [a, b]× S̄T , y = a+
x− s(t)
L− s(t)

, i ∈ I2,(3.2)

where t ∈ ST is arbitrarily fixed. We introduce the notation ui(y, t) := ûi(x, t)−
λi(t) for all y ∈ [a, b] and t ∈ ST . Further, let ûi := φφwūi, i ∈ {1, 3, 4}, û2 :=
φφaū2, ûi := φūi, i ∈ {5, 6} and write down the original moving-boundary sys-
tem (2.1)–(2.12) on fixed domains. As a result of this procedure, we obtain the
transformed PDEs system (3.3)–(3.13). The model equations have the forms

(ui + λi),t −
(Diui,y),y

s2(t)
= fi(u+ λ) + y

s′(t)
s(t)

ui,y, i ∈ I1,(3.3)

(ui + λi),t −
(Diui,y),y

(L− s(t))2
= fi(u+ λ) + (2− y)

s′(t)
L− s(t)

ui,y, i ∈ I2,(3.4)

where u is the concentration vector (u1, u2, u3, u5, u6)t and λ represents the bound-
ary data (λ1,λ2,λ3,λ5,λ6)t. We make use of λ3 and λ6 only for notational simplic-
ity (λ3 := λ6 := 0). The vectors of concentrations u0 and λ are assumed to be
compatible, i.e.

u0i(0) = λi(0), and hence ûi(0) = 0 for i ∈ I1.(3.5)

Our initial boundary and interface conditions are now:

(3.6)
ui(y, 0) = ui0(y), i ∈ I1 ∪ I2, ui(a, t) = 0,

i ∈ I1, ui,y(b, t) = 0, i ∈ I2,

−D1

s(t)
u1,y(1) = ηΓ(1, t) + s′(t)(u1(1) + λ1),(3.7)

−D2

s(t)
u2,y(1) = s′(t)(u2(1) + λ2),(3.8)

−D3

L− s(t)
u3,y(1) = −ηΓ(1, t) + s′(t)(u3(1) + λ3),(3.9)

−D5

s(t)
u5,y(1) +

D6

L− s(t)
u6,y(1) = ηΓ(1, t), u5(1) + λ5 = u6(1) + λ6,(3.10)

where ηΓ(1, t) denotes the reaction rate that acts in the y-t plane. We also mention
that ui0(y) = ûi0(x) − λi(0), where x = ys0, y ∈ [0, 1] for i ∈ I1, and x =
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s0 + (y − 1)(L− s0), y ∈ [1, 2] for i ∈ I2. The vectors of concentrations u0 and λ
are assumed to be compatible, i.e.

u0i(0) = λi(0), and hence, ûi(0) = 0 for i ∈ I1.(3.11)

The formulation is completed with two ordinary differential equations

s′(t) = ψΓ(1, t) and v′4(t) = f4(v4(t)) a.e. t ∈ ST ,(3.12)

where v4(t) := û4(s(t), t) for t ∈ ST , for which we take

s(0) = s0 > 0, v4(0) = û40.(3.13)

3.2. Function spaces. Weak formulation

The definition and properties of the function spaces used here can be found in [19],
e.g. For each i ∈ I1 ∪I2, we denote Hi := L2(a, b) and set [a, b] := [0, 1] for i ∈ I1

and [a, b] := [1, 2] for i ∈ I2. Moreover, H :=
∏

i∈I1∪I2
Hi and V :=

∏
i∈I1∪I2

Vi,
where Vi are the Sobolev spaces Vi := {u ∈ H1(a, b) : ui(a) = 0}, i ∈ I1 and
Vi := H1(a, b), i ∈ I2. In addition, | · | := || · ||L2(a,b) and || · || := || · ||H1(a,b).
If (Xi : i ∈ I) is a sequence of given sets Xi, then X |I1∪I2| denotes the product∏

i∈I1∪I2
Xi := X1 ×X2 ×X3 ×X5 ×X6.

Let ϕ := (ϕ1, ϕ2, ϕ3, ϕ5, ϕ6)t ∈ V be an arbitrary test function and take t ∈ ST .
The weak formulation of (3.3)–(3.13) reads as follows:

(3.14)



a(s, u, ϕ) :=
1
s

∑
i∈I1

(Diui,y, ϕi,y) +
1

L− s

∑
i∈I2

(Diui,y, ϕi,y),

bf (u, s, ϕ) := s
∑
i∈I1

(fi(u), ϕi) + (L− s)
∑
i∈I2

(fi(u), ϕi),

e(s′, u, ϕ) :=
∑

i∈I1∪I2

gi(s, s′, u(1))ϕi(1),

h(s′, u,y, ϕ) := s′
∑
i∈I1

(yui,y, ϕi) + s′
∑
i∈I2

((2− y)ui,y, ϕi),

for any u ∈ V and λ ∈ W 1,2(ST )|I1∪I2|. The term a(·) incorporates the diffusive
part of the model, bf (·) comprises volume productions, e(·) sums up reaction terms
acting on Γ(t) and h(·) is a non-local term due to fixing the domain. The interface
terms gi(i ∈ I1 ∪ I2) are given by g1(s, s′, u) := ηΓ(1, t) + s′(t)u1(1), g2(s, s′, u) := s′(t)u2(1),

g3(s, s′, u) := ηΓ(1, t)− s′(t)u3(1), g5(s, s′, u) := ηΓ(1, t),
g6(s, s′, u) := 0,

(3.15)

whereas the volume terms fi (i ∈ I) are defined as

(3.16)

 f1(u) := P1(Q1u2 − u1), f4(û) := +η̃Γ(s(t), t),
f2(u) := −P2(Q2u2 − u1), f5(u) := 0,
f3(u) := S3,diss(u3,eq − u3), f6(u) := 0.



CONTINUITY WITH RESPECT TO DATA AND PARAMETERS 211

The initial and boundary data as well as the model parameters are assumed to
satisfy the following set of restrictions:

λ ∈W 1,2(ST )|I1∪I2|, λ(t) ≥ 0 a.e. t ∈ S̄T ,(3.17)

u3,eq ∈ L∞(ST ), u3,eq(t) ≥ 0 a.e. t ∈ S̄T ,(3.18)

u0 ∈ L∞(a, b)|I1∪I2|, u0(y) + λ(0) ≥ 0 a.e. y ∈ [a, b],(3.19)

û40 ∈ L∞(0, s0), û4(x, 0) > 0 a.e. x ∈ [0, s0],(3.20)

s0 > 0, L0 < L < +∞, s0 < L0,(3.21)
min{S3,diss, P1, Q1, P2, Q2, D`(` ∈ I1 ∪ I2)} > 0.(3.22)

We denote

m0 := min{s0, L− L0}, M0 := max{L0, L− s0}.(3.23)

Set

K :=
∏

i∈I1∪I2

[0, ki],(3.24)

and, for fixed Λ ∈MΛ, we take

MηΓ := max
ū∈K

{η̄Γ(ū,Λ)}.(3.25)

In (3.24), we set
(3.26) 

ki := max{ui0(y) + λi(t), λi(t) : y ∈ [a, b], t ∈ S̄T }, i = 1, 2, 3, 6,
k4 := max{û40(x) +MηΓT : x ∈ [0, s(t)], t ∈ S̄T },
k5 := max{u50(y) + λ5(t), λ6(t), κ : y ∈ [a, b], t ∈ S̄T },
k6 := k5,

where

κ :=
L0

D5 −MηΓLL0

(
MηΓ +

L

2
|λ5,t|∞ + 1

)
.(3.27)

Definition 3.1 (Local Weak Solution; cf. [10, 13]). We call the triple (u, v4, s)
a local weak solution to the problem (3.3)–(3.13) if there is a δ ∈]0, T ] with Sδ :=
]0, δ[ such that

s0 < s(δ) ≤ L0,(3.28)

v4 ∈W 1,4(Sδ), s ∈W 1,4(Sδ),(3.29)

u ∈W 1
2 (Sδ; V,H) ∩ [S̄δ 7→ L∞(a, b)]|I1∪I2|,(3.30)

For all ϕ ∈ V and a.e. t ∈ Sδ we have

s
∑
i∈I1

(ui,t(t), ϕi) + (L− s)
∑
i∈I2

(ui,t(t), ϕi) + a(s, u, ϕ) + e(s′, u+ λ, ϕ)

= bf (u+ λ, s, ϕ) + h(s′, u,y, ϕ)− s
∑
i∈I1

(λi,t(t), ϕi)− (L− s)
∑
i∈I2

(λi,t(t), ϕi),

s′(t) = ηΓ(1, t), v′4(t) = f4(v4(t)) a.e. t ∈ Sδ,
u(0) = u0 ∈ H, s(0) = s0, v4(0) = û40.
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3.3. Assumptions of the model parameters and constitutive reaction-
rate law

The only assumptions that are needed are the following:
(A) Fix Λ ∈ MΛ. Let η̄Γ(ū,Λ) > 0, if ū1 > 0 and ū3 > 0, and η̄Γ(ū,Λ) = 0,

otherwise. For any fixed ū1 ∈ R, η̄Γ is bounded.
(B) The reaction rate η̄Γ : R6 ×MΛ → R+ is locally Lipschitz. This restricts

the choice of p and q in (2.11).
(C1) 1 > k3 ≥ maxS̄T

{|u3,eq(t)| : t ∈ S̄T }; D5 −MηΓL > 0;
(C2) P1Q1k2 ≤ P1k1; P2k1 ≤ P2Q2k2.

Remark 3.2.
(i) We refer to reader to [10] to see a possible physical interpretation of the

restrictions (A)–(C).
(ii) For our convenience, we define the constants K1 = K3 := 0, and K2 and

K4 via (3.44) and (5.5), respectively.

By (A) and (B), we deduce that ηΓ(0,Λ) = 0 for all Λ ∈ MΛ. For all ū ∈ R6

there is an ε-neighborhood Uε(ū) and a positive constant Cη = Cη(Λ, λ, ε, Tfin)
such that the inequality

η̄Γ(ū(s(t), t),Λ) ≤ Cη|ū(s(t), t)|(3.31)

holds for all t ∈ ST . (3.31) can be reformulated as

ηΓ(1, t) ≤ Cη|u(1, t)| for all t ∈ ST .(3.32)

Note also that there exists a function cg = cg(Cη) such that

|e(s′, u(1), ϕ(1))| ≤ cg|u(1)||ϕ(1)| for all ϕ ∈ V(3.33)

and a constant cf = cf (Cη,K1) > 0 such that

|bf (u, s, ϕ)| ≤ cf
(
|u3,eq|2∞ + |u|2 + |ϕ|2

)
for all ϕ ∈ V,(3.34)

where K1 > 0 is a constant depending on the material parameters entering fi

(i ∈ I), i.e. P1, P2, Q1, Q2, and S3,diss. The exact structure of cg, cf and K1 is
dictated by the definition of the production terms fi and gi (i ∈ I), see (3.16) and
(3.15). Since ψΓ(1, t) has essentially the same structure as ηΓ(1, t), it also satisfies
(A) and (B).

3.4. Known results

In this section, we list a couple of known results (see [10, 13]) which will be
extensively used in section 5.

Lemma 3.3 (Some Basic Estimates). Let cξ > 0, ξ > 0, θ ∈ [ 12 , 1[ and
s ∈W 1,1(Sδ).

(i) There exists the constant ĉ = ĉ(θ) > 0 such that

|ui|∞ ≤ ĉ|ui|1−θ||ui||θ(3.35)

for all ui ∈ Vi, where i ∈ I1 ∪ I2.
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(ii) It holds

|ui|1−θ||ui||θ ≤ ξ||ui||+ cξ|ui|(3.36)

for all ui ∈ Vi, where i ∈ I1 ∪ I2.
(iii) Let ϕ ∈ V with ϕ = (ϕ1, . . . , ϕ6)t, t ∈ Sδ, ĉ as in (i), and ξ, cξ as in (ii).

Then, for i ∈ I1 and j ∈ I2, we have the following inequalities:
|s′(t)|
s(t)

(yϕi,y, ϕi) =
1
2
|s′(t)|
s(t)

{ϕi(1)2 − |ϕi|2} ≤
1
2
|s′(t)|
s(t)

{ĉ2|ϕi|2(1−θ)||ϕi||2θ−|ϕi|2};

|s′(t)|
s(t)

|ϕi(1)|2 ≤ |s′(t)|
s(t)

|ϕi|2∞ ≤ ξ

s2(t)
||ϕi||2 + cξ ĉ

2
1−θ × s(t)

2θ−1
1−θ |s′(t)|

1
1−θ |ϕi|2;

|ϕi(1)|2

s2(t)
≤ 1
s2(t)

|ϕi|2∞ ≤ ĉ2s(t)2θ−2|ϕi|2(1−θ)
(
s(t)−1||ϕi||

)2θ

≤ ξ

s2(t)
||ϕi||2 + cξ ĉ

2
1−θ |s(t)|

2(θ−1)
1−θ |ϕi|2;

|ϕi(1)|2

s(t)
≤ ξ

s2(t)
||ϕi||2 + cξ ĉ

2
1−θ |s(t)|

2θ−1
1−θ |ϕi|2

|s′(t)|
L− s(t)

((2− y)ϕj,y, ϕj) =
1
2
|s′(t)|
L− s(t)

|ϕj(1)|2 +
1
2
|s′(t)|
L− s(t)

|ϕj |2.

Theorem 3.4 (Positivity and L∞-Estimates). Let the triple (u, v4, s) as in
Definition 3.1 satisfy the assumptions (A)–(C2). Then the following statements
hold:

(i) (Positivity) u(t) + λ(t) ≥ 0 in V for all t ∈ Sδ.
(ii) (L∞-estimates) Let ` ∈ I1 ∪ I2 be arbitrarily fixed. There exists a constant

k` > 0 (see (3.26)) such that u`(t) + λ`(t) ≤ k` in V` (` ∈ I − {4, 5}) for
all t ∈ Sδ. In addition, there exists a constant k5 > 0 such that u5(t) ≤ k5y
a.e. y ∈ [0, 1] and all t ∈ Sδ.

(iii) (Localization of the interface)

s0 ≤ s(t) ≤ s0 + δMηΓ for all t ∈ Sδ, where MηΓ is given in (3.26).

(iv) (Positivity and boundedness of v4 at Γ(t))

0 < û40 ≤ v4(t) ≤ û40 + δMηΓ for all t ∈ Sδ.

Lemma 3.5 (Energy Estimates). Assume that (A)–(C2) hold and let the triple
(u, v4, s) be as in Definition 3.1. The following statements hold a.e. in Sδ:

|u(t) + λ(t)|2 ≤ α(t) exp
(∫ t

0

β(τ)dτ
)

;(3.37)

|u(t) + λ(t)|2 ≤ α(t) +
∫ t

0

β(s)α(s) exp
(∫ t

s

β(τ)dτ
)

ds;(3.38) ∫ t

0

||u(τ) + λ(τ)||2dτ ≤ d−1
0 α(t) exp

(∫ t

t0

β(τ)dτ
)
,(3.39)
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where

d0 := min
{

min
i∈I1

s0Di

L2m0
, min

i∈I2

(L− L0)Di

(L− s0)2m0

}
, m0 as in (3.23).(3.40)

The factors a(t), α(t) and β(t) are given by

a(t) :=
(s′(t))2

2
+

(L− s(t))2K2

2
,(3.41)

α(t) := |ϕ(0)|2 +
2
m0

∫ t

0

a(τ)dτ,(3.42)

β(t) :=

[
s′(t)

2
+K2

(
2 +

D3

L− s(t)
+
s′(t)

2

)2
]

1
m0

,(3.43)

whereas

K2 := 1 + (S3,diss|u3,eq|∞)2 +
LP1Q1

2
+ cξ ĉ

4.(3.44)

Furthermore, we have

u ∈ L2(Sδ,V), u,t ∈ L2(Sδ,V∗), u ∈ C(S̄δ,H).(3.45)

Theorem 3.6 (Local Existence and Uniqueness). Assume the hypotheses
(A)–(C2) and let the conditions (3.17)–(3.2) be satisfied. Then the following as-
sertions hold:

(a) There exists a δ ∈]0, T [ such that the problem (3.3)–(3.13) admits a unique
local solution on Sδ in the sense of Definition 3.1;

(b) 0 ≤ ui(y, t)+λi(t) ≤ ki a.e. y ∈ [a, b] (i ∈ I1 ∪ I2) for all t ∈ Sδ. Moreover,
0 ≤ û4(x, t) ≤ k4 a.e. x ∈ [0, s(t)] for all t ∈ Sδ;

(c) v4, s ∈W 1,∞(Sδ).

4. Main result

Select i ∈ {1, 2} and let (u(i), v
(i)
4 , si) be two weak solutions on Sδ in the sense of

Definition 3.1. They correspond to the sets of data

Di := (u(i)
0 , λ(i),Ξ(i),Υ(i),Λ(i))t,

where u(i)
0 , λ(i), Ξ(i), Υ(i), and Λ(i) denote the respective initial data, boundary

data, and the model parameters describing diffusion, dissolution mechanisms and
carbonation reaction, respectively.

In this context, we have Ξ(i) := (D(i)
` (` ∈ I1 ∪ I2), P

(i)
k (k ∈ {1, 2}), Q(i)

k (k ∈
{1, 2}), S(i)

3,diss)
t ⊂MΞ and Υ(i) = (u(i)

3,eq) ⊂MΥ, i ∈ {1, 2}. Here MΞ and MΥ are
compact subsets of R10

+ and L2(Sδ).
Set ∆u := u(2) − u(1), ∆v4 := v

(2)
4 − v

(1)
4 , ∆s := s2 − s1, ∆λ := λ(2) − λ(1),

∆u0 := u
(2)
0 − u(1)

0 , ∆Ξ := Ξ(2) −Ξ(1), ∆Υ := Υ(2) −Υ(1), ∆Λ := Λ(2) −Λ(1), and
∆ηΓ := η̃

(2)
Γ − η̃

(1)
Γ := η̄

(2)
Γ (ū(2),Λ(2))− η̄

(1)
Γ (ū(1),Λ(1)). The Lipschitz condition of

ηΓ reads: There exists a constant cL = cL(D1,D2) > 0 such that the inequality
|∆ηΓ| ≤ cL(|∆u|+ |∆Λ|) holds locally pointwise, see (B).
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Having these notations available, we can state now the main result of the paper.

Theorem 4.1. Let (u(i), v
(i)
4 , si)(i ∈ {1, 2}) be two local weak solutions on Sδ

in the sense of Definition 3.1 satisfying the assumptions of Theorem 3.6. Let
(u(i)

0 , λ(i),Λ(i)) be the vector of initial, boundary and reaction data. Then the
function H × W 1,2(Sδ)|I1∪I2| × MΞ × MΥ × MΛ → W 1

2 (Sδ,V,H) × W 1,4(Sδ)2,
which maps (u0, λ,Ξ,Υ,Λ)t into (u, v4, s)t, is Lipschitz in the following sense:
There exists a constant c = c(δ, s0, û40, L, ki, cL, δ) > 0 (i ∈ I1 ∪ I2) such that

‖∆u‖2W 1
2 (Sδ,V,H)∩L∞(Sδ,H) + ‖∆v4‖2W 1,4(Sδ)∩L∞(Sδ) + ||∆s||2W 1,4(Sδ)∩L∞(Sδ)

≤ c
(
‖∆u0‖2H∩L∞([a,b]|I1∪I2|) + ‖∆λ‖2

(W 1,2(Sδ)∩L∞(Sδ))|I1∪I2|

)
+ c

(
max
MΞ

|∆Ξ|2 + ||∆Υ||2MΥ∩L∞(Sδ) + max
MΛ

|∆Λ|2
)
.

(4.1)

We prove Theorem 4.1 in Section 5. A direct consequence of this result is the
stability of the moving boundary as stated in the next result.

Corollary 4.2 (Stability of the Interface). Assume that the hypotheses of The-
orem 4.1 are satisfied. Then the function H × W 1,2(Sδ)|I1∪I2| × MΞ × MΛ →
W 1,4(Sδ), which maps the data (u0, λ,Ξ,Υ,Λ)t into the position of the interface
s, is Lipschitz in the following sense: There exists a constant c = c(δ, s0, û40, L,
ki, cL, δ) > 0 such that

‖∆s‖2W 1,4(Sδ)∩L∞(Sδ) ≤ c
(
‖∆u0‖2H∩L∞([a,b]|I1∪I2|)+‖∆λ‖

2
(W 1,2(Sδ)∩L∞(Sδ))|I1∪I2|

)
+ c

(
max
MΞ

|∆Ξ|2 + ||∆Υ||2MΥ∩L∞(Sδ) + max
MΛ

|∆Λ|2
)
.(4.2)

Putting together the statements of Theorem 4.1 with those of [13, Theorem 3.3
and Theorem 3.4], the well-posedness of the moving boundary system described
in Section 1 is shown.

5. Proof of Theorem 4.1

Let (u(i), v
(i)
4 , si)(i ∈ {1, 2}) be two weak solutions on Sδ (in the sense of Definition

3.1), which satisfy the assumptions of Theorem 3.6. We want to show that the
function H×W 1,2(Sδ)|I1∪I2|×MΞ×MΥ×MΛ →W 1

2 (Sδ,V,H)×W 1,4(Sδ)2 that
maps (u0, λ,Ξ,Υ,Λ)t into (u, v4, s)t is Lipschitz continuous in the sense of (4.1).
By (3.2), the positions si(t), i = 1, 2 of the interfaces Γi(t) (i ∈ {1, 2}) satisfy the
geometrical restriction

0 < si0 := si(0) ≤ si(t) ≤ Li0 < L for i ∈ {1, 2} and t ∈ Sδ.

Denoting s0 := max{s10, s20} and L0 := min{L10, L20}, the common space domain
traveled by the interfaces Γi(t) is Ω :=]s0, L0[. Within this frame we only discuss
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the case s0 < L0. Set

L∗ := min
t∈S̄δ

{min{si(t), L− si(t)} : i = 1, 2},(5.1)

D0 := min{D(i)
j : j ∈ I1 ∪ I2, i ∈ {1, 2}} > 0.(5.2)

We subtract the weak formulation (3.31) for the solution (u(1), v
(1)
4 , s1) from the

weak formulation written in terms of (u(2), v
(2)
4 , s2). Choosing w = (u(2)−u(1))t +

(λ(2) − λ(1))t ∈ V (i.e. wj = u
(2)
j − u

(1)
j + λ

(2)
j − λ

(1)
j ∈ Vj for each j ∈ I1 ∪ I2) as

test function, we obtain

s2
∑
i∈I1

1
2

d
dt
|wi(t)|2 + (L− s2))

∑
i∈I2

1
2

d
dt
|wi(t)|2

+
1
s2

∑
i∈I1

‖
√
Di

(2)
wi‖2 +

1
(L− s2)

∑
i∈I2

‖
√
Di

(2)
wi‖2 ≤

5∑
`=1

J`,

(5.3)

where the terms J` (` ∈ {1, . . . , 5}) are defined by

J1 := ∆s
∑
i∈I1

(u(1)
i,t , wi)−∆s

∑
i∈I2

(u(1)
i,t , wi)

J2 :=
∆s
s1s2

∑
i∈I1

(D(1)
i u

(1)
i,y , wi,y)− ∆s

(L− s1)(L− s2)

∑
i∈I2

(D(1)
i u

(1)
i,y , wi,y)

+
|∆D|
s1

∑
i∈I1

(u(1)
i,y , wi,y) +

|∆D|
L− s1

∑
i∈I2

(u(1)
i,y , wi,y),

J3 := s2

[
P

(2)
1 (Q(2)

1 u
(2)
2 − u

(2)
1 , w1)− P

(2)
2 (Q(2)

2 u
(2)
2 − u

(2)
1 , w2)

]
− s1

[
P

(1)
1 (Q(1)

1 u
(1)
2 − u

(1)
1 , w1)− P

(1)
2 (Q(1)

2 u
(1)
2 − u

(1)
1 , w2)

]
+ (L− s2)S

(2)
3,diss(u

(2)
3,eq−u

(2)
3 , w3)− (L− s1)S

(1)
3,diss(u

(1)
3,eq−u

(1)
3 , w3)

J4 :=
[
η
(2)
Γ +s′2u

(2)
1 (1)

]
w1(1)−s′2u

(2)
2 (1)w2(1)(5.4)

+
[
η
(2)
Γ −s′2u

(2)
3 (1)

]
w3(1)−η(2)

Γ w5(1)

−
[
η
(1)
Γ + s′1u

(1)
1 (1)

]
w1(1) + s′1u

(1)
2 (1)w2(1)

−
[
η
(1)
Γ − s′1u

(1)
3 (1)

]
w3(1) + η

(1)
Γ w5(1)

+
1
s2

∑
i∈I1

D
(2)
i |wi(1)|2 +

1
L− s2

∑
i∈I2

D
(2)
i |wi(1)|2

J5 := s′2
∑
i∈I1

(yu(2)
i,y , wi) + s′2

∑
i∈I2

((2− y)u(2)
i,y , wi)

− s′1
∑
i∈I1

(yu(1)
i,y , wi)− s′1

∑
i∈I2

((2− y)u(1)
i,y , wi).
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To simplify the writing of the estimates, we employ the constant K4, which is
given by

K4 := 1+ cξcξ̄
(
ĉk̄

) 2
1−θ + k̄2 + k̄4ĉ4 + 2cξk̄2 + max

{
1,
L

2

}
+ cξ + (ĉ2c̃)

1
1−θ + cξ

∑
i∈I1∪I2

(
D

(1)
i

)2

+
[
(k1 + k2)P

(2)
1 Q

(2)
1

]2

+ (LQ(2)
1 k2)2 + (P (2)

1 k2)2 + 2
(
P

(2)
1 Q

(2)
1

)2

.

(5.5)

Note that K4 is finite and depends on k` (` ∈ I1 ∪ I2), cξ, c̃, cξ̄, θ, and δ. To
estimate the above terms |J`| (` ∈ {1, . . . , 5}) we use all of the estimates that
we have already possed, that is positivity, maximum, and energy estimates. We
obtain

|J1| ≤
|∆s|2

2
|w1,t|2 +

|w|2

2
.

|J2| ≤ 2ξ
∑
i∈I1

‖wi‖2

s22
+ 2ξ

∑
i∈I2

‖wi‖2

(L− s2)2

+K4

(
1
s21

+
1

(L− s1)2

)
‖u(1)

1 ‖2|∆s|2

+K4

[(
s2
s1

)2

+
(
L− s2
L− s1

)2
]
‖u(1)

1 ‖2|∆D|2

(5.6)

(5.7) |J3| ≤
3
2
|∆s|2 +

L

2
(
|∆S3,diss|2 + |∆u3,eq|2∞

)
+ |∆P |2 + |∆Q|2 +K4|w|2.

Since MηΓ <∞, then there exists a constant c̃ ∈ R∗
+ such that

c̃ > 1 + 3Cη + 4k2
2 + k2

3 + 2MηΓ +
L− L0 + s0
s0(L− L0)

∑
i∈I1∪I2

Di.(5.8)

Using (5.8), we obtain

|J4| ≤ |∆Λ|2 +
3
2
|∆s|2 + c̃|w(1)|2

≤ |∆Λ|2 +
3
2
|∆s|2 + c̃ĉ2s2θ

2

∑
i∈I1

‖wi‖2θ

s2θ
2

|wi|2(1−θ)

+ c̃ĉ2(L− s2)2θ
∑
i∈I2

‖wi‖2θ

(L− s2)2θ
|wi|2(1−θ)

≤ ξ
∑
i∈I1

‖wi‖2

s22
+ ξ

∑
i∈I2

‖wi‖2

(L− s2)2
+ |∆Λ|2 +

3
2
|∆s|2

+K4

[
s

2θ
1−θ

2 + (L− s2)
2θ

1−θ

]
|w|2.

(5.9)
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Furthermore, it holds

J5 = h(s′2, u
(2)
,y , w)− h(s′1, u

(1)
,y , w)

= s2
s′2
s2

∑
i∈I1

(yu(2)
i,y , wi)− s1

s′1
s1

∑
i∈I1

(yu(1)
i,y , wi)

+ (L− s2)
s′2

L− s2

∑
i∈I2

((2− y)u(2)
i,y , wi)− (L− s1)

s′2
L− s2

∑
i∈I2

((2− y)u(2)
i,y , wi)

= J51 + J52.

Using again Lemma 3.3, we establish upper bounds for these terms in the following
fashion:

J51 ≤ L
s′2
s2

∑
i∈I1

|(ywi,y, wi)|+ L|
(
s′2
s2
− s′1
s1

)
|
∑
i∈I1

|(yu(1)
i,y , wi)|,

J52 ≤ L
s′2

L− s2

∑
i∈I2

|((2− y)wi,y, wi)|

+ L

∣∣∣∣( s′2
L− s2

− s′1
L− s1

)∣∣∣∣ ∑
i∈I2

|((2− y)u(1)
i,y , wi)|.

It holds

(5.10)

1
L
|J51| ≤

s′2
s2

∑
i∈I1

|(ywi,y, wi)|+
|∆s′|
s2

∑
i∈I1

|(yu(1)
i,y , wi)|

+
s′1
s1s2

|∆s|
∑
i∈I1

|(yu(1)
i,y , wi)|.

Firstly, we see that

s′2
s2

∑
i∈I1

|(ywi,y, wi)| ≤ ξ
∑
i∈I1

||wi||2

s22
+ cξ ĉ

2
1−θ

(
s′2
2

) 1
1−θ

s
2θ−1
1−θ

2

∑
i∈I1

|wi|2.

Furthermore, for each i ∈ I1 we use the relation |(yu(1)
i,y , wi)| ≤ |u(1)

i (1)wi(1)| +
|(ywi,y, u

(1)
i )|+ |(u(1)

i , wi)| to split the last two sums in (5.10) as follows:

1
L
|J51| ≤ ξ

∑
i∈I1

‖wi‖2

s22
+ cξ ĉ

2
1−θ

(
s′2
2

) 1
1−θ

s
2θ−1
1−θ

2

∑
i∈I1

|wi|2

+ I + II + III + IV + V + VI,

where

I :=
|∆s′|
s2

∑
i∈I1

|u(1)
i (1)wi(1)| ≤

∑
i∈I1

|∆s′| ĉk̄
s1−θ
2

‖wi‖θ

sθ
2

|wi|1−θ

≤ 2ξ̄|∆s′|2 + ξcξ̄
∑
i∈I1

‖wi‖2

s22
+ cξcξ̄

(
ĉk̄

) 2
1−θ

s22

∑
i∈I1

|wi|2

(with k̄ ≥ 2 max ki (i ∈ I)),
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II :=
|∆s′|
s2

∑
i∈I1

|(ywi,y, u
(1)
i )| ≤

∑
i∈I1

‖wi‖
s2

k̄|∆s′|

≤ 2cξk̄2|∆s′|2 + ξ
∑
i∈I1

‖wi‖2

s22
,

III :=
|∆s′|
s2

∑
i∈I1

|(u(1)
i , wi)| ≤ 2|∆s′|2 +

k̄2

2s22

∑
i∈I1

|wi|2,

IV :=
s′1
s1s2

|∆s|
∑
i∈I1

|u(1)
i (1)wi(1)|

≤ 2ξ̄|∆s|2 + ξcξ̄
∑
i∈I1

‖wi‖2

s22
+

1
s22

(
k̄ĉ
s′1
s1

) 2
1−θ ∑

i∈I1

|wi|2,

V :=
s′1
s1s2

|∆s|
∑
i∈I1

|(ywi,y, u
(1)
i )| ≤ 2cξk̄2|∆s|2

(
s′1
s1

)2

+ ξ
∑
i∈I1

‖wi‖2

s22
,

VI :=
s′1
s1s2

|∆s|
∑
i∈I1

|(u(1)
i , wi)| ≤ 2|∆s|2 +

s′21 k̄
2

s21s
2
2

∑
i∈I1

|wi|2.

These inequalities yield an upper bound on |J51|. It holds

(5.11)

1
L
|J51| ≤ ξ(3 + 2cξ̄)

∑
i∈I1

‖wi‖2

s22
+ |∆s|2

[
2(1 + ξ̄) +K4

(
s′1
s1

)2
]

+ 2|∆s′|2(1 + ξ̄ +K4)

+K4

[
1
s22

+
(s′1)

2

s21s
2
2

+
(s′2)

2

4
+

(s′1)
4

s41s
2
2

] ∑
i∈I1

|wi|2.

Using the inequality

|((2− y)u(1)
i,y , wi)| ≤ |u(1)

i (1)wi(1)|+ |((2− y)wi,y, u
(1)
i )|+ |(u(1)

i , wi)|, i ∈ I2,

we find that

(5.12)

1
L
|J52| ≤ ξ(3 + 2cξ̄)

∑
i∈I2

‖wi‖2

(L− s2)2

+ |∆s|2
[
1 + ξ̄ +K4

(
s′1

L− s1

)2
]

+ |∆s′|2(1 + ξ̄ +K4) +K4

[
1

(L− s2)2
+

(s′1)
2

(L− s1)2(L− s2)2

+
(s′2)

2

4
+

(s′1)
4

(L− s1)4(L− s2)2

] ∑
i∈I2

|wi|2.
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By (5.11) and (5.12), it yields
(5.13)

|J5| ≤ ξL(3 + 2cξ̄)
∑
i∈I1

‖wi‖2

s22
+ ξL(3 + 2cξ̄)

∑
i∈I2

‖wi‖2

(L− s2)2

+ L

[
3(1 + ξ̄) +K4

(
s′1
s1

)2

+K4

(
s′1

L− s1

)2
]
|∆s|2

+ 3L(1 + ξ̄ +K4)|∆s′|2

+ LK4

[
1

(s2)2
+

(s′1)
2

(s1)2(s2)2
+

(s′2)
2

4
+

(s′1)
4

(s1)4(s2)2
+

1
(L− s2)2

+
(s′1)

2

(L− s1)2(L− s2)2
+

(s′2)
2

4
+

(s′1)
4

(L− s1)4(L− s2)2

]
|w|2.

Simple algebraic manipulations show that we can bound the sum
∑5

`=1 |J`| by

(5.14)

ξ(3 + 3L+ 2cξ̄)
∑
i∈I1

‖wi‖2

s22
+ ξ(3 + 3L+ 2cξ̄)

∑
i∈I2

‖wi‖2

(L− s2)2
+K4|∆Ξ|2

+K4|∆Λ|2 +K4

[(
s2
s1

)2

+
(
L− s2
L− s1

)2
]
‖u(1)

1 ‖2|∆D|2

+ |∆s2|
[
3 + 3L+ 3Lξ̄ +

|w1,t|2

2
+K4

(
1
s21

+
1

(L− s1)2

)
‖u(1)

1 ‖2

+ LK4

(
s′1
s1

)2

+ LK4

(
s′1

L− s1

)2
]

+ |∆s′|23L(1 + ξ̄ +K4)

+ |w|2
[
1
2

+K4

(
χ2(t) + s

2θ
1−θ

2 + (L− s2)
2θ

1−θ

)]
,

where the expression of χ2(t) is given by

(5.15)
χ2(t) := L

[
1

(s2)2
+

(s′1)
2

(s1)2(s2)2
+

(s′2)
2

4
+

(s′1)
4

(s1)4(s2)2
+

1
(L− s2)2

+
(s′1)

2

(L− s1)2(L− s2)2
+

(s′2)
2

4
+

(s′1)
4

(L− s1)4(L− s2)2

]
.

We select ξ̄ > 0 and ξ > 0 such that the first two sums in (5.14) can be neglected
when they are compared with the diffusive part from the left-hand side of (5.3).
On this way, we obtain D0

L2
∗
− ψ(ξ, ξ̄) > 0, where ψ(ξ, ξ̄) := ξ(3 + 3L + 2cξ̄), and

also

(5.16)
1
2

d
dt
|w(t)|2 +

(
D0

L2
∗
− ψ(ξ, ξ̄)

)
‖w(t)‖2 ≤ a(t) + b(t)|w(t)|2,
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where the expressions of a(t) and b(t) (t ∈ Sδ) are given by

a(t) := K4|∆Λ|2 +K4|∆ξ|2 + a11(t)|∆s|2 + a12(t)|∆s′|2 + a13(t)|∆Di|2

b(t) :=
1
2

+K4

(
χ2(t) + s

2θ
1−θ

2 + (L− s2)
2θ

1−θ

)
.

We do not need here to list the exact expressions of a1k(t) (k ∈ {1, 2, 3}). They can
be easily obtained when comparing the right-hand side of (5.16) to the estimate
on

∑5
`=1 |J`|. Here, we only need to know that

∫
Sδ
a1k(τ)dτ < ∞ (k ∈ {1, 2, 3}).

The latter inequality follows via the energy estimates. Additionally, we note that
for any t0 ∈ Sδ we have

|a11(t)|∆s(t)|2 + a12(t)|∆s′(t)|2 ≤ a11(t)(t− t0)
∫ t

t0

|∆η(τ)|2dτ + a12(t)|∆η(t)|2.

Now, denoting by ã(t) the sum

ã(t) := K4|∆Λ|2 +K4|∆Ξ|2 + a13(t)|∆D|2,
we re-write (5.16) in the form

1
2

d
dt
|w(t)|2 +

(
D0

L2
∗
− ψ(ξ, ξ̄)

)
‖w(t)‖2 ≤ ã(t) + a11(t)δ

∫ t

0

|∆η(τ)|2dτ

+ a12(t)|∆η(t)|2 + b(t)|w(t)|2.(5.17)

Let the functions α, β : Sδ → R+ be defined by

α(t) := 2
∫ t

0

a(τ)dτ and β(t) := 2b(t).

Here

a(t) = ã(t) + a11(t)δ
∫ t

0

|∆η(τ)|2dτ + a12(t)|∆η(t)|2.

Note that α is strictly increasing on Sδ. By (5.16) or (5.17), and Gronwall’s
inequality, we infer that

(5.18) |w(t)|2 ≤
(
|w(0)|2 + α(t)

)
exp

(∫ t

0

β(τ)dτ
)

a.e. t ∈ Sδ.

Owing to (5.16) and (5.18), and reasoning in the standard way (see, e.g. the proof
of Claim 3.3.27 in [10]), we derive the desired upper bound on

∫
Sδ
‖w(τ)‖2dτ . The

conclusion of the Theorem follows in a straightforward manner.
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