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ON THE COMPUTATION OF MULTIPLICITY BY THE
REDUCTION OF DIMENSION
E. BODA axp D. JASKOVA

ABSTRAKT. In this short note we describe one method for the computation of the
Samuel multiplicity of the polynomial ideals and prove a formula for the multiplicity

of the ideal (a;z;’ — 5¢+1xli)rr11; i=1,...,n)-Rin R (with the convention z,,+1 =
Z1, Bn+1 = B1, bnt1 = b1), where (R,m) = k[z1,x2,... ?x”](zl,zg YYYY z,) is @ local

polynomial ring over an algebraic closed field k.

Let (A, m) be a Noetherian local ring with dim A = d. For any m-primary ideal
Q in A the A-module A/Q™ is of the finite length for all n € N. For large n this
length function becomes a polynomial (Hilbert-Samuel polynomial) which can be
written as

d
L(A/Q™) = eo(Q, A)% + terms of lower degree.

The coeficient e (Q, A) is called the Samuel multiplicity (or simply) multiplicity of
@ in A. We present one method how to count this multiplicity when @ is generated
by a system of parameters in a local polynomial ring.

Let P = k[xy,...,x,] be a polynomial ring over an algebraic closed field k.
Let fi1,..., fn_r denote a system of polynomials in P such that algebraic vari-
ety V(f1,--., fn—r) is of dimension r, 0 < r < n. We say that the set of poly-
nomials {u;(s1,...,8,) € k[s1,...,8,], 4 = 1,...,n} represents the polynomial
parametrization of W if the image of the map

kK" — E"
given by
(ar,az2,...,a.) — (u1(ay,...,a.), ..., un(ay,...,a))

is V(f17"'afn—7")-

Now we can formulate the main theorem of this note.

Theorem 1. Let P = k[xy,...,x,] be a polynomial ring over an algebraic
closed field k and (R, m) = k[x1,...,%n](z,,... 2, the localization of P with respect
to mazimal ideal (x1,...,2,) - P. Let fi,..., fn denote a system of polynomials
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in P such that (f1,..., fn) - R is an m-primary ideal in R. Let W be an algebraic
variety in E™ defined by the equations f1(z1,...,2n) = ... = fu—r(T1,...,2) =0
with dim W = r and the polynomial parametrization {u;(s1,...,8,) € k[s1,..., 8],
i =1,...,n}. Suppose that the polynomial ring k [s1,...,s.]| is a finite k[ug, ...
..., uy]-module. Let d denote the dimension of the field k(s1,...,s,) as a vector
space over the field k(uy,...,uy,). With this hypothesis we have
60((f1>~~'7fn) RvR) d = 60((Fn—r+17"'7Fn) : SaS)

where F; = fi(u1(S1,-+-,8r), - sun(s1,...,8:)) for i=n—r+1,...;n and
S=klst,. . 85y, 00

Proof. From our construction we have the monomorphism
klxy,...yxnl/(frye ooy fomr) K[z, oy mn]) Ekuy .o un] — k[s1,. .., 8]

and hence the local monomorphism

R/(fi, oo for) RZE[ur, o]y oy = RST8] 6y -

As the module & [sq,..., sr](s1 .5,y is finite over the ring & [ug, ... 7un](u1 i)
the additivity formula applied to the multiplicity eo((f1,..., fn) - R, R) provides
the equality

eo((f1s-wosfu) R/ (froeeos fuer) - By R/(f1, s fr) - R) - d
= eo((F—ri1,---,Fpn)-S,9)
(cf. [3, Theorem 14.7]). As the ideal (f1,..., fn) - R is generated by a system of
parameters, we have
eo((fi,---s fn) B R) -d = eo((Fp—rt1,---, Fn) - S, S),
(cf. [4, Chap.7, Theorem 18]) which completes the proof. O

Let us shift to the ideal (a;z)" — /Biﬂx,lzrf;i =1,...,n)- R in the local poly-
nomial ring (R, m) = k[z1,22,...,%n](y, 4, ) As the mentioned ideal satisfies
the condition of the above formulated Theorem 1, we can prove the formula for

its multiplicity. We start with n = 2.

Lemma 2. Let (ax® — By°, vy — 6x%) - A be a parameter ideal in the local ring
(A,m) =k [x?y]('z7y) (a’a bv Cvd € N; O‘vﬁv’%é € k) Then

eo ((ax® — Byb,vy¢ — dz%) - A, A) = min{ac, bd}.

Proof. After dividing the polynomials of the basis by « resp. v, we can assume
that « =~v = 1. If ged(a,b) =r, a =ar, b= br, then
T p—
2 — gy’ = [[(=" - &)
i=1

for certain & € k (k being algebraically closed). As

eo (2% — Byb,y¢ — dx?) - A, A) = Zeo (" — &byt — ox?) - A, A)
i=1
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(see [4, Chap. VII, Theorem 7)), we can assume that a, b are relatively prime with
k-a—1-b=1 for certain k,l € N. Then the equations

T = ﬁka

y=p's"

represent the polynomial parametrization of the curve V given by 2¢ — 3y = 0. In
addition, k(3%s®, 's%) = k(s). Now Theorem 1 provides the following equalities

€o ((xa - ﬁybv Y- 5md) - A, A) = 60((6Z.C3alc - 6ﬁk-d8b'd) -k [3](5) ok [S](s))
= min{ac, bd}

which completes the proof. 1

And now we formulate the general result.

Theorem 3. Let I = (a;x}* — ﬁi+1xsf11;i =1,...,n)- R be a parameter ideal
in R (with the convention x,1 = x1, Bnt1 = B1, bnt1 = b1), where (R,m) =
k[z1,22,. .. ’x"](zl,za,u.,xn) s a local polynomial ring over an algebraic closed field
k. Then

eo(I, R) = min {ﬁai,ﬁbi} .
i=1  i=1

Proof. We use induction on n > 2. For n = 2 the assertion is the above
Lemma 2. Let now

; biv1,
I = (oyz}' — @Hxi:f;z =1,...,n) kz1,za,... ’xn](xl,xz,...,xn) , n > 2.
As in Lemma 2 we can assume that the first polynomial is of the form z{* — 625532
with a1, b; being relatively prime with k- a; — [ - by = 1 for certain k,I € N. So
the polynomial parametrization of the hypersurface V(z{* — ﬁgmgz) in E™ has the
following form

b
Ty = ﬂ§512
zy = Bhsy!
T; = S;—1 fori=3,...,n.
As k(85" BLs% s9, ... 8n_1) = k(s1,...,8,_1), the induction hypothesis and
the Theorem 1 imply
I : b b - b
eo(I, R) = eo((avaBy 2811 — B3sy?, a3s5® — Basst, ... s Q180" — Bns," 1,
k-by _ba-b
'7an8271_ﬂ162 1812 1)']6[81"'78"*1](51 ..... sn_1)7k[81"'78n*1](51 ..... sn_l))

=min{a; - az...an, b1 - ba... by},

which completes the proof. Il

Finally, we illustrate the previous results by an example.
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Example 4. Let I = (2% —y*, 25— 27,45 —28).C [2,9, 2]
ideal in the ring C'[2,y, 2], , .- As ged(3,4) = ged(5,7)
curve W given by the equations

(z,y,2) De a parameter
= 1, we can take the

and the parametrization

r =5
y = 21
z=s%

Then the Theorem 1 applied to our ideal I and the variety W provides the equality
(2,2) C 259, 2]
=eo((s - %20 . C [s](s)» C' 8] (5)) = 126.
On the other hand, we can take the polynomial
¥ -2 =) - () = (- N+ 2

and the surface V given by y® — 2% = 0, resp. parametrically

eO(IS *y4,$5 7Z7ay6 728) O[$7y,Z] (z,y,2)

xr =S
y=1t'
z=1t

and compute
eo((2® — y* e — 2Ty - 2%)-Cla,y, Z](x,y,z) Clz,y, Z](x,y,z))
=2.eo((y® — 24 2% —yt2® — 27) - Clx,y, ) .2y C 18U 2] (44 2))
=2-eo((s* = 11%,5° = 21) - C[s,1] . ), Cl5, 1], ) = 2-min{3 - 21,5 - 16} = 126.
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