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MYTHICAL NUMBERS

MIRO BÁZLIK

Dedicated to Dušan Dudák

1. Introduction

In this paper we show that the three prime numbers 3, 7 and 13, which repeatedly
occur in various myths, in the Bible, in fables and fairy tales, possess a remarkable
property, distinguishing them from other integers.

The n-th prime is denoted as usual by pn; additionally we put p0 = 1. In
case of a more complicated argument we sometimes use the alternative notation
P (n) = pn. Further we denote by

S(x) =
∑
p≤x

p

the sum of all primes less than or equal to any real number x. Hence

S(x) =
n∑

i=1

pi

where pn is the biggest prime less than or equal to x.
Let us write in a table the initial segments of the following four sequences: the

nonnegative integers n, the prime numbers pn in their natural order, the sequence
P (pn) of the prime numbers with prime subscripts, and the sequence S(pn) of
sums of primes up to the n-th prime pn.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
pn 1 2 3 5 7 11 16 17 19 23 29 31 37 41

P (pn) 2 3 5 11 17 31 41 59 67 83 109 127 157 179
S(pn) 0 2 5 10 17 28 41 58 77 100 129 160 297 138

Table 1
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We can see that the items P (pn) and S(pn) in the third and fourth row of
Table 1 coincide just for n = 2, n = 4 and n = 6. This means that by adding
all the prime numbers up to x = pn in the second row of the table we obtain
the prime number px = P (x) in the third row just for x = 3, x = 7 and x = 13.
Strengthening this observation to all positive integers x leads us to the formulation
of the theorem, which will be proved in what follows.

Theorem. The prime numbers 3, 7 and 13 are the only integers x ≥ 1 satisfying
the equation

(1.1)
∑
p≤x

p = px.

In view of the following scheme

it may seem natural to refer to integers x satisfying (1.1) as to “transcending”.
However, since these three solutions are exactly the primes 3, 7, 13, we shall call
them “mythical”. The verification that they satisfy (1.1) is straightforward:

2 + 3 = 5 = p3,

2 + 3 + 5 + 7 = 17 = p7,

2 + 3 + 5 + 7 + 11 + 13 = 41 = p13.

Before we prove the Theorem, let us discuss the “mythical trinity” more closely.
Recall that 3 = p2, 7 = p4 and 13 = p6. This means that the number 3 is doubly
distinguished by (1.1). Namely, it satisfies (1.1) (hence, it “transcends”), on the
other hand, equation (1.1) is satisfied exactly by the first three primes with even
indices p2, p4 and p6.

Looking at the four sequences n, pn, P (pn) and S(pn), again, we may try to
iterate the idea of “transcending”. More precisely, we modify (1.1) as follows:

(1.2)
x∑

i=0

pi = P (px),

where we now include the summand p0 = 1 which was not included in (1.1). It is
natural to consider (1.2) only for prime numbers x which satisfy (1.1):
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3∑
i=0

pi = 1 + 2 + 3 + 5 = 11 = p5 = P (p3),

7∑
i=0

pi = 1 + 2 + 3 + 5 + 7 + 11 + 13 + 17 = 59 = p17 = P (p7),

13∑
i=0

pi = 239 = p52 6= 179 = p41 = P (p13).

In conclusion, the number 13 does not satisfy the “second order transcendency”
equation (1.2). Hence, from the trinity which advanced from the first round, the
number 13 fails to transcend again. This perhaps could justify the belief in the
“unlucky” 13.

To finish the introduction, let us have a look at the “third order transcendency”.
The corresponding equation reads as follows:

(1.3)
x∑

i=0

ppi
= P (ppx

).

If we consider the validity of (1.3) for x = 3 and x = 7, we find that
3∑

i=0

ppi = 2 + 3 + 5 + 11 = 21 6= P (pp3) = p11 = 31,(1.4)

7∑
i=0

ppi
= 2 + 3 + 5 + 11 + 17 + 31 + 41 + 59 = 169 6= P (pp7) = p59 = 277.(1.5)

This means that while only the number 13 fails at the “second transcendency”,
the remaining two numbers fail at the “third transcendency”. However, it is worth
noticing that the sums yield 21 = 3 · 7 in (1.4), and 169 = 132 in (1.5). Thus the
results can be expressed by means of numbers from our trinity, again.

2. Proof of the Theorem

Let π(x) denote the number of prime numbers which are less than or equal to x,
log x be the natural logarithm of x, and bxc be the (lower) integer part of x. Then

(2.1)
∑
p≤x

p =
x∑

n=1

(π(n) − π(n − 1))n = −
x∑

n=1

π(n) + π(x)(bxc + 1).

Using the following inequalities (see [1, page 228])

π(x) <
x

log x

(
1 +

3
2 log x

)
for x > 1,

π(x) >
x

log x

(
1 +

1
2 log x

)
for x ≥ 59,

(2.2)
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we obtain from (2.1) that

∑
p≤x

p = −
x∫

2

π(u)du + π(x)(bxc + 1)

> −
x∫

2

u

log u

(
1 +

3
2 log u

)
du + π(x)(bxc + 1)

> −
x∫

2

udu

log u
− 3

2

x∫
2

udu

log2 u
+ x

x

log x

(
1 +

1
2 log x

)
.(2.3)

Integrating by parts we see that
x∫

2

udu

log u
=

x2

2 log x
− 22

2 log 2
+

1
2

x∫
2

udu

log2 u
,

therefore (2.3) yields:

(2.4)
∑
p≤x

p >
x2

2 log x
+

x2

2 log2 x
− 2

x∫
2

udu

log2 u
+

2
log 2

.

Since the function u log−2 u is decreasing for 1 < u ≤ e2 and increasing for u ≥ e2,
it holds that

x∫
2

udu

log2 u
=

e2∫
2

udu

log2 u
+

x∫
e2

udu

log2 u
< (e2 −2)

2
log2 2

+ (x − e2)
x

log x
.

The last inequality and (2.4) imply now that

(2.5)
∑
p≤x

p >
x

2 log x
− 3

2
x2

log2 x
+

2 e2 x

log2 x
− B for x ≥ 59,

where

B =
2

log 2

(
2

log 2
(e2 −2) − 1

)
.

Using the upper bound (see [1, page 247])

pn < n log n + n log log n for n ≥ 6,

we have

(2.6)
∑
p≤x

p − pbxc > x(f(x) − g(x)) for x ≥ 59,
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where

f(x) =
x

2 log x
− 3

2
x

log2 x
+

2 e2

log2 x
− 1

x
B,

g(x) = log x + log log x.

We shall show that there is an x0 > 59 such that f(x) − g(x) > 0 for x > x0.
To this end it suffices to find an x0 > 0 such that f(x0) > g(x0) and the function
f(x) − g(x) is increasing for x ≥ x0. Since

f ′(x) =
1

2 log x

(
1 − 4

log x

)
+

1
log3 x

(
6 − 4 e2

x

)
+

1
x2

B,

we obtain that

(2.7) f ′(x) ≥ 1
2 log x

(
1 − 4

log x

)
+

2
log3 x

+
1
x2

B for x ≥ e2 .

Using (2.7) we now see that

f ′(x) − g′(x) ≥ 1
2 log x

(
1 − 4

log x

)
+

2
log3 x

+
B

x2
− 1

x

(
1 +

1
log x

)
=

1
2 log x

[
1 −

(
4

log x
+

2
x

)]
+

(
2

log3 x
− 1

x

)
+

B

x2
for x ≥ e2 .

Therefore, if x0 ≥ e2 is such that

2x > log3 x for x ≥ x0,(2.8)

and

2
x

+
4

log x
< 1 for x ≥ x0,(2.9)

then

f ′(x) − g′(x) > 0 for x ≥ x0,

It suffices to choose x0 = e5 ≈ 143.413 > 59 because then

f(x0) ≈ 362.436 > g(x0) ≈ 6.609,

as well as
2
x0

+
4

log x0
=

2
e5

+
4
5

<
1
24

+
4
5

< 1

and (2.9) holds. Clearly, (2.8) is satisfied too. Hence f(x)− g(x) is increasing for
x ≥ x0.

Thus for every integer x ≥ 149 we have∑
p≤x

p > px.
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Notice that 149 = p35. It remains to show that among the integers 1 ≤ x ≤ p35

just the primes 3, 7 and 13 satisfy (1.1). To this end notice that for each n ≥ 0
the condition pn ≤ x < pn+1 implies

S(x) =
∑
p≤x

p =
n∑

i=1

pi = S(pn).

Using a computer let us extend Table 1 up to n = 35 and by adding a fifth row
containing the initial segment of the sequence P (pn+1 − 1). Now, any column of
the new Table 2 corresponds to the interval pn ≤ x < pn+1.

As readily seen, for n ≥ 10, i.e. for x ≥ 29, we already have

P (pn) < P (pn+1 − 1) < S(pn) = S(x),

whenever pn ≤ x < pn+1, exactly as for n ≥ 35, i.e. for x ≥ 149.
On the other hand, for n ∈ {0, 1, 3, 5, 7}, i.e. for x ∈ {1; 2; 5, 6; 11, 12; 17, 18}

we have
S(x) = S(pn) < P (pn) < P (pn+1 − 1),

excluding any counterexample pn ≤ x < pn+1 to (1.1), as well.
Finally, for n ∈ {8, 9} we have

P (pn) < S(x) = S(pn) < P (pn+1 − 1),

so that a counterexample pn ≤ x < pn+1 could perhaps occur. Fortunately, for
n = 8, we have p8 = 19, so that all the primes

p19 = 67, p20 = 71, p21 = 73, p22 = 79

differ from the sum S(x) = 77 for 19 ≤ x < 23. Similarly, for n = 9, we have
p9 = 23, and all the primes

p23 = 83, p24 = 89, p25 = 97, p26 = 101, p27 = 103, p28 = 107

are distinct from the sum S(x) = 100 for 23 ≤ x < 29, again.
There remain the columns for n ∈ {2, 4, 6}, corresponding to our mythical num-

bers and their “prime interval companions” x ∈ {3, 4; 7, 8, 9, 10; 13, 14, 15, 16}.
2

Perhaps it is worthwhile to notice the “almost mythical” number x = 26 = 2 ·13
for which the sum ∑

p≤26

p = 100

and the prime p26 = 101 differ just by 1.

3. Supplement

In our opinion, the so-called natural numbers tell us about laws of this world a
lot more than we are able to admit or comprehend. So for example, the recently
proved Fermat’s theorem on nonexistence of nontrivial integer solutions of the
equation

(3.1) xn + yn = zn
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n
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

p
n

1
2

3
5

7
11

13
17

19
23

29
31

37
41

43
47

53
59

61
67

71
P

(p
n
)

2
3

5
11

17
31

41
59

67
83

10
9

12
7

15
7

17
9

19
1

21
1

24
1

27
7

28
3

33
1

35
3

S
(p

n
)

0
2

5
10

17
28

41
58

77
10

0
12

9
16

0
19

7
23

8
28

1
32

8
38

1
44

0
50

1
56

8
63

9
P

(p
n
+

1
−

1)
2

3
7

13
29

37
53

61
79

10
7

11
3

15
1

17
3

18
1

19
9

23
9

27
1

28
1

31
7

34
9

35
9

n
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

p
n

73
79

83
89

97
10

1
10

3
10

7
10

9
11

3
12

7
13

1
13

7
13

9
14

9
P

(p
n
)

36
7

40
1

43
1

46
1

50
9

54
7

56
3

58
7

59
9

61
7

70
9

73
9

77
3

79
7

85
9

S
(p

n
)

71
2

79
1

87
4

96
3

10
60

11
61

12
64

13
71

14
80

15
93

17
20

18
51

19
88

21
27

22
76

P
(p

n
+

1
−

1)
39

7
42

1
45

7
50

3
54

1
55

7
57

7
59

3
61

3
70

1
73

3
76

9
78

7
85

7
86

3

T
a
b
le

2
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for n > 2, together with the long ago known fact that there are infinitely many
integer solutions of this equation for n = 2, seem apparently related in a strange or
even mysterious way to the validity of the Pythagorean theorem which is essentially
the basis of the Euclidean geometry.

Similarly, we can mention the theorem saying that the Diofantic equation

(3.2) n = x2 + y2 + z2 + u2

has an integer solution for every natural number n. Probably its most elegant
proof makes use of the multiplicative property of the quaternion norm given by

|q|2 = q q∗ = q2
0 + q2

1 + q2
2 + q2

3 ,

where q = q0+q1i+q2j+q3k is an arbitrary quaternion and q∗ = q0−q1i−q2j−q3k
is its adjoint. On the other hand, this result seems essential to allow for the very
existence of Hamilton’s quaternions as a four-dimensional non-commutative and
associative division algebra over reals with the above norm. A deep theorem
states that there are up to isomorphisms just three continuous associative division
algebras over the field of reals: the real numbers themselves, the complex numbers,
and the quaternions, with dimensions 1, 2 and 4, respectively. Moreover, the
quaternion multiplication, through the formula

p q = 〈p, q〉 + p0~q + q0~p + (~p × ~q),

is closely related to the spatial vector product ~p × ~q of the vector parts ~p =
p1i + p2j + p3k, ~q = q1i + q2j + q3k of the quaternions p, q, and their pseudoscalar
product

〈p, q〉 = p0q0 − p1q1 − p2q2 − p3q3,

determining the geometry of the Minkowski’s four-dimensional time-space in Ein-
stein’s Special Theory of Relativity.

We find it very interesting that the equation (1.1) specifies precisely the three
prime numbers 3, 7 and 13. As if equations (3.1) and (3.2) decided about geometry
and physics and (1.1) about myths.

We add the following to the latter: Analogously to the definition of the factorial
n! = 1 · 2 · . . . · n, we introduce the summarial

n!
+

= 1 + 2 + . . . + n.

If we then compute the summarials of the three solutions of (1.1), we obtain

3!
+

= 6, 7!
+

= 28, 13!
+

= 91.

The first two summarials are the first two perfect numbers. The third one is not
perfect, however, both the number as well as the sum of its proper divisors can be
expressed as products

91 = 7 · 13, 1 + 7 + 13 = 21 = 3 · 7

of pairs of the mythical primes. This means that the last summarial does not
give rise to perfection but just to some kind of “quasiperfection” —the number 13
returns in some sense, accompanied with 3 and 7.
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We see that the three solutions of (1.1) satisfy many remarkable relations and
this is perhaps the reason why they became selected.
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