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AN AMERICAN CONVERT CLOSE TO MATURITY

G. ALOBAIDI and R. MALLIER

Abstract. We use an asymptotic expansion to study the behavior of an American

convertible bond close to maturity, under the assumptions that the underlying stock
price obeys a lognormal random walk and the risk-free rate is given by either the

Vasicek model or the Cox-Ingersoll-Ross model. Series solutions are obtained for

the location of the free boundary and the price of the bond in that limit.

1. Introduction

A convertible bond, or convert , is debt which can be converted into the equity
of the issuing corporation at certain times using a pre-determined exchange ratio
[17], with the option to convert solely at the discretion of the bond holder, who
will do so only if it is beneficial. If and when conversion occurs, new shares are
issued by the corporation, with the existing shares diluted by the creation of the
new ones. For arbitrage reasons, a convertible bond cannot be worth less than
an otherwise identical non-convertible bond. To an issuer, convertible debt has
the advantage of lower interest cost than straight debt, but with the drawback
that the issuer faces capital structure uncertainty. In return for a reduced yield,
an investor will receive a security with considerable upside potential along with
downside protection. There is a large global market for convertible debt, with in
excess of $400 billion in market value outstanding in 2000 [14], because of which
the pricing of these securities is an important problem.

The behavior of a convertible bond can be classified into four regimes [14] ac-
cording to the conversion premium, which is the excess an investor would pay to
acquire the stock by buying the convertible and immediately converting rather
than buying the stock itself. Most new issued converts tend to be balanced con-
verts, which respond to changes in both the underlying stock price and the spot
interest rate, with a correlation of about 55% to 80% with changes in the stock
price, with around a 25% conversion premium of about 25%. Once the price of
the underlying has risen, the convert tends to be an equity substitute convert ,
which responds much more to changes in the stock price than to interest rate
changes, with a conversion premium of less than 15%. If the underlying stock
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price has declined so significantly that the conversion option is worth very lit-
tle, the convert is a busted convert whose value approaches that of an otherwise
identical non-convertible bond. Distressed converts are a sub-category of busted
converts, where the stock price has fallen so much that there is a significant chance
of bankruptcy.

As with other derivatives, contingent claims analysis has been used to value
convertibles, and this approach dates back to [8, 9, 15]. Initially, the firm value
was used as the underlying variable [8], with the analysis extended later to in-
clude stochastic interest rates [9] and the value of the stock rather than that of
the firm [24]. Almost all of this earlier work led to a numerical rather than an
analytical solution of the underlying equations for the value of a convertible bond,
typically using binomial trees, while a later thread [21, 23] was analytical, using
a Green’s function approach to value securities whose value depended on both
a stock price and interest rate. The present study is entirely analytical, using
asymptotic analysis.

In our analysis, we consider a convertible bond, whose value depends on both
the price S of the underlying stock, which is assumed to obey a lognormal random
walk with constant volatility, as in the Black-Scholes-Merton option pricing model
[7, 26], and on the interest rate r, which is assumed to follow a mean-reverting
random walk given by either the Vasicek [39] or the Cox-Ingersoll-Ross (CIR)
[11, 12] model. From these models, we have stochastic differential equations for
both the stock price and the spot rate. By constructing a risk-free portfolio, it is
possible to go from these stochastic differential equations to a partial differential
equation (PDE) for the value of the convert [40], and this PDE is the starting
point for our analysis in the next section.

American converts contain an embedded American-style option, and as with
American equity options this embedded option can be exercised at any time at or
prior to maturity. As a consequence, American converts are harder to price than
their European counterparts, because the possibility of early exercise leads to a
free boundary separating the region where it is optimal to hold from that where
exercise is optimal. In theory, exercise should take place only on this free boundary,
known as the optimal exercise boundary. This sort of free boundary problem is
common in diffusion problems such as melting and solidification problems and is
referred to as a Stefan problem, and a large number of studies have focused on
the optimal exercise boundary for American equity options, and in particular on
the behavior of this boundary close to expiry, including [2, 3, 5, 10, 13, 16, 18,
20, 22, 25, 28, 38]. In our analysis, we will consider an American zero coupon
convert, which can be converted to one unit of stock at any time at or prior to
maturity, and which pays an amount P , the principal, at maturity if the option to
convert is not exercised, so that the pay-off on the free boundary is S and that at
maturity is max (S, P ). To prevent arbitrage, the value of the bond must be equal
to the value of the stock on the free boundary. In addition, we have the smooth
pasting or high contact conditions [27] that the option’s delta (or derivative of its
value with respect to asset price ∂V/∂S) and rho (or derivative with respect to
interest rate ∂V/∂r) must both be continuous across the boundary. Since the stock
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is held on one side of the boundary, this means that ∂V/∂S = 1 and ∂V/∂r = 0
at the boundary. The location of the free boundary at maturity will be S = P ,
which motivates us to seek a free boundary of the form S = Sf (r, t), where t is
time.

In the present study, we will use a technique developed by Tao [29]–[37] for
free boundary problems arising in melting and solidification. Tao used a series
expansion in time to find the location of the moving surface of separation between
two phases of a material, and in almost all of the cases he studied, he found that
the location of the interface was proportional to τ1/2, τ being the time since the
two phases were first put in contact. Tao’s method has been applied to American
equity options in the past [2, 3, 13, 22], and in those studies, a change of variables
[13, 40] was use to transform the governing equations into the heat conduction
equation studied by Tao, along with a nonhomogeneous term. Because we are
seeking a free boundary of the form S = Sf (r, t), we are able to use the same
transformation in this study as was used for American equity options, with no
transformation applied to r.

At this point, the condition on the delta merits further comment. At maturity,
where it is optimal to hold the bond ∂V/∂S = 0, yet on the free boundary we
have ∂V/∂S = 1 prior to maturity, so that there is a discontinuity in the delta.
When similar discontinuities occur for American equity options [3, 4, 5, 22], they
appear to lead to logarithmic behavior of the free boundary, which is therefore the
behavior we expect here. Although this discontinuity is possible in the financial
setting, it does not seem to occur in physical Stefan problems, which perhaps
explains why Tao [29]–[37] never encountered logarithmic behavior.

The rest of our paper is as follows. We will present our analysis for American
converts in Section 2, followed by a brief discussion of our results in Section 3.

2. Analysis

In this section we will discuss the value V (S, r, t) of a convertible bond. We
shall assume that the asset price S and spot interest rate r obey the stochastic
differential equations,

dS = µSdt + σSdX1,

dr = u(r, t)dt + w(r, t)dX2,
(1)

where σ is the volatility of the stock price and µ is the drift, while dX1 and dX2 are
both normally distributed with zero mean and variance dt and may be correlated,
with E [dX1dX2] = ρdt and −1 ≤ ρ(r, S, t) ≤ 1. S obeys a lognormal random
walk, as in the Black-Scholes-Merton option pricing model, [7, 26]. Constructing
a risk-free portfolio leads to the following PDE for V [40],

∂V

∂t
+

σ2S2

2
∂2V

∂S2
+ ρσSw

∂2V

∂S∂r
+

w2

2
∂2V

∂r2

+ (r −D) S
∂V

∂S
+ (u− λw)

∂V

∂r
− rV = 0,

(2)
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which for t ≤ T , where T is the time at which the bond matures. In the above,
D is the constant dividend yield of the stock, λ(r, S, t) is the market price of
interest rate risk and u− λw is the risk adjusted drift. Many of the popular one-
factor interest rate models are special cases of the general affine model for which
u − λw = a(t) − b(t)r and w = (c(t)r − d(t))1/2 [40]. Two of these special cases
are the Vasicek model [39] and the Cox-Ingersoll-Ross (CIR) model [11, 12], with
u− λw = a− br for both models and w = c for the Vasicek model and w = cr1/2

for the CIR model, where a, b and c are constants rather than functions of t. The
Vasicek model allows interest rates to become negative but is popular because it
is extremely tractable.

If we specialize to either Vasicek or CIR, both of which are mean-reverting
models, and also assume that the correlation ρ is constant, (2) becomes

∂V

∂t
+

σ2S2

2
∂2V

∂S2
+ ρσcrµS

∂2V

∂S∂r
+

c2r2µ

2
∂2V

∂r2

+ (r −D) S
∂V

∂S
+ (a− br)

∂V

∂r
− rV = 0,

(3)

with µ = 0 for Vasicek and 1/2 for CIR. We will suppose the pay-off at maturity
t = T is V (S, r, T ) = max (S, P ), while at the free boundary S = Sf (r, t) we have
V (S, r, t) = S. We shall proceed along the same lines as [2, 3, 13, 22] and make
the change of variables V (S, r, t) = S + Pv (x, r, τ), S = P ex and t = T − 2τ/σ2,
where Pv is the conversion premium, which transforms (3) into

σ2

2
∂v

∂τ
=

σ2

2
∂2v

∂x2
+ ρσcrµ ∂2v

∂x∂r
+

c2r2µ

2
∂2v

∂r2

+
(

r −D − σ2

2

)
∂v

∂x
+ (a− br)

∂v

∂r
− rV −Dex

(4)

with v(x, r, 0) = max (0, 1− ex) at maturity while at the free boundary x =
xf (r, τ) we have v = ∂v/∂x = ∂v/∂r = 0. The bond should be held where
x < xf (r, τ) and converted where x > xf (r, τ).

At maturity the free boundary starts at S = P or equivalently x = 0. In
the analysis that follows, strictly speaking the equation (4) is valid only for those
parameter values where it is advantageous to hold the bond, so that at maturity, we
can only impose the initial condition on x < 0, and the initial condition becomes
v → 1− ex as τ → 0.

To tackle the equation (4) and associated boundary and initial conditions, we
shall follow Tao and seek a series solution. While Tao expanded in powers of τ1/2,
in the current problem, the discontinuity in the delta mentioned above means that
we must include logs as well as powers of τ1/2 in the expansion, and this seems
to be the rule when there is a discontinuity in the delta at the free boundary
[3, 4, 5, 22]. The series for v(x, r, τ) is therefore

v (x, r, τ) = τ1/2V
(0)
1 (ξ, r) +

∞∑
n=2

∞∑
m=0

τn/2 (− ln τ)−m
V (m)

n (ξ, r) ,(5)
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which is the same form as for the American put with D < r considered in [22],
with ξ = xτ−1/2/2 a similarity variable. The minus sign is included in (− ln τ)
because ln τ is negative for 0 < τ < 1. It is worth noting that logarithms first enter
in this series with the τ1 terms rather than the leading τ1/2 term. We assume that
the free boundary is located at x = xf (r, τ) which we also write as a series,

xf (r, τ) ∼
∞∑

n=1

∞∑
m=0

x(m)
n (r) τn/2(− ln τ)1−n/2−m,(6)

with x
(0)
1 (r) =

√
2. The leading order scaling of xf (τ) ∼ x

(0)
1 (−τ ln τ)1/2, which

is the same as for the American options, is chosen because we need |xf (r, τ)| �
O
(
τ1/2

)
, and more specifically exp

[
−x2

f

4τ

]
∼ O

(
τ1/2

)
. The presence of logs in

the series (6) for xf (r, τ) necessitates the presence of logs in the series (5) for
v (x, r, τ).

With this expansion, it follows that on the free boundary we have

e−ξ2
= exp

[
−

x2
f

4τ

]
∼ τ1/2 ex

(2)
1 /

√
2
[
1 +O

(
ln−1 τ

)]
,

erfc(ξ) = erfc
[

xf

2
√

τ

]
∼
(

2τ

−π ln τ

)1/2

ex
(2)
1 /

√
2
[
1 +O

(
ln−1 τ

)]
,

(7)

where erfc is the complementary error function. and we have used the result [1]

that as ζ →∞, erfc(ζ) ∼ e−ζ2

ζ
√

π

[
1 +

∑∞
m=1

(2m−1)!!
(−2ζ2)m

]
.

In our analysis, we substitute the assumed form for v(x, τ) (5) in the PDE
(4) and group powers of τ1/2 and − ln τ . We find the following equations for the
leading order terms at each power of τ1/2 in this expansion,

LnV (0)
n =



0 n = 0

(2ξ)n−1
D

(n− 1)!σ2
+MnV

(0)
n−1 n = 1

(2ξ)n−1
D

(n− 1)!σ2
+MnV

(0)
n−1 +NnV

(0)
n−2 n ≥ 2

,(8)

where
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1
8
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∂ξ2
+

ξ

4
∂

∂ξ
− n

2
,
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(
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2σ2
+

1
4

)
∂

∂ξ
− ρcrµ

2σ

∂2

∂ξ∂r
and

Nn =
r

σ2
+

br − a

σ2

∂
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− c2r2µ

2σ2

∂2

∂r2
.
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It is straightforward to write the solutions to the equations (8) which satisfy
the initial condition that v(x, 0) = max(1− ex, 0) for x ≤ 0,

V
(0)
1 = − 2ξ +

[
e−ξ2

√
π

+ ξ erfc (−ξ)

]
C

(0)
1 (r),

V
(0)
2 = − 2ξ2 − 2r

σ2
+

[
2ξ e−ξ2

√
π

+
(
1 + 2ξ2

)
erfc (−ξ)

]
C

(0)
2 (r)

+
[(

1 +
2 (D − r)

σ2

)
C

(0)
1 (r)− 2ρcrµ

σ
C

(0)′
1 (r)

][
ξ e−ξ2

√
π

+ ξ2 erfc (−ξ)

]
.(9)

In (9), V
(0)
1 is the same for both the Vasicek and CIR models, but V

(0)
2 differs for

the two models, because of the rµ factor in the C
(0)′
1 (r) term. We would mention

that since we can only impose the initial condition on x < 0, the limit τ → 0
means that ξ → −∞. To impose the initial condition that v → 1 − ex as τ → 0,
we require that τn/2V

(0)
n → −xn/n!, and we first set e−ξ2

= erfc(−ξ) = 0, and
then replace ξ by xτ−1/2/2 and finally take the limit τ → 0.

Next, we impose the the conditions at the free boundary on (9). To do this,
we replace x by (6), the series for xf (r, τ), using the expressions (7) for e−ξ2

and
erfc(ξ) at the free boundary. This tells us that C

(0)
1 = 1 and C

(0)
2 = r−D

σ2 , so that
(9) becomes

V
(0)
1 =

e−ξ2

√
π
− ξ erfc (ξ) ,

V
(0)
2 =

ξ e−ξ2

√
π

+
(

D − r

σ2
− ξ2

)
erfc (ξ)− 2D

σ2
.

(10)

Since C
(0)′
1 (r) = 0, V

(0)
2 is now the same for both models. However, if we perform

the same procedure at the next order, we find that V
(0)
3 differs for the two models,

V
(0)
3 =

[
ρcrµ

σ3
+

(r −D)2

σ4
− r + D

σ2
+

2ξ2

3
− 1

12

]
e−ξ2

√
π

+
[
2Dξ

σ2
− 2ξ3

3

]
erfc (ξ)− 4Dξ

σ2
.

(11)

In (10), we have the leading order terms at each power of τ1/2 and we can
comment further on the discontinuity in ∂v/∂x. From (10), at leading order,
∂v/∂x ∼ −x+1

2 erfc
(

x
2τ1/2

)
+ O

(
τ1/2

)
, which enables us to see the discontinu-

ity: when τ = 0, erfc
(

x
2τ1/2

)
= 2 for x < 0, while on the free boundary xf (τ),

erfc
(

x
2τ1/2

)
∼
√

2τ
−π ln τ ex

(2)
1 /

√
2. The complementary error function provides im-

mediate smoothing of this discontinuity, as τ increases from zero.
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For the next terms in the expansion, at τn/2/ (− ln τ), we have the following
equations,

LnV (1)
n =


0 n = 1

MnV
(1)
n−1 n = 2

MnV
(1)
n−1 +NnV

(1)
n−2 n ≥ 3

,(12)

where Ln, Mn and Nn are as above. It should be noted that these equations (12)
do not involve the leading order terms V

(0)
n . The solution at the first order for

both models is

V
(1)
2 = C

(1)
2

[
2ξ e−ξ2

√
π

+
(
1 + 2ξ2

)
erfc(−ξ)

]
.(13)

With our expression for the free boundary (6), at leading order the conditions
on the free boundary applied to (10,13) tell us that C

(1)
2 (r) = D

σ2 and x
(1)
1 (r) =

−
√

2 ln
[

4
√

πD
σ2

]
for both models. The analysis at the next order is rather involved,

but tells us that x
(0)
2 (r) = −1− 2(r−D)

σ2 for both models. We now know the behavior
of the free boundary in the limit τ → 0,

xf (τ) ∼
√
−2τ ln τ

(
1 +

ln
(
4
√

πD/σ2
)

ln τ
+O

(
ln−2 τ

))
+O (τ) ,

Sf (t) ∼ P exp

[
σ

√
−(T − t) ln

[
σ2(T − t)

2

]

×

(
1 +

ln
(
4
√

πD/σ2
)

ln[σ2(T − t)/2]
+O

(
ln−2

[
σ2(T − t)

2

]))
(14)

+ O (T − t)] .

Our analysis of the convert is now complete. It should be noted that x11(r)→∞
as D → 0+, and also that the forcing term −D ex in (4) vanishes in the same
limit. Because of this, just as with American equity call options, an American
zero coupon convert should never be exercised early if the underlying stock does
not pay dividends.

3. Discussion

In the previous section, we used an asymptotic expansion of the governing PDE
to study the behavior of a zero coupon American convert close to maturity, whose
value depended on both the price S of the underlying stock, which was assumed
assuming to obey a lognormal random walk with constant volatility, as in the
Black-Scholes-Merton option pricing model [7, 26], and on the interest rate r,
which was assumed to follow a mean-reverting random walk given by either the
Vasicek [39] or the Cox-Ingersoll-Ross (CIR) [11, 12] model. The primary ra-
tionale for using these models are that they are popular models and also highly
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tractable. The Vasicek model has the undesirable property that interest rates can
go negative, while the CIR model does not allow interest rates to change sign.

The principal results of this paper are two sets of expressions: an expression
(14) for the location of the free boundary close to maturity, along with expressions
(5,10,11,13) for the value of the bond in that limit. To the order shown, the free
boundary was the same for both models considered, but this will not be true at
subsequent orders. It is interesting to note that, provided D, the dividend yield of
the stock, is positive, the location of the free boundary close to maturity is of the
form xf (r, τ) ∼

√
τ(− ln τ), which is the same form as that for the American put

with D < r and the American call with D > r [3, 5, 22, 28]. This differs from the
xf (τ) ∼ x1

√
τ behavior for the American put with D > r and the American call

with D < r which was also the behavior encountered most often by Tao [29]-[37],
who pioneered the method used here, in his studies of Stefan problems arising
in melting and solidification. Although Tao encountered several behaviors other
than the

√
τ behavior, he did not come across the

√
τ(− ln τ) behavior found both

here and with American options for the parameter ranges mentioned above. We
suspect that this logarithmic behavior is caused by the discontinuity in ∂V/∂S
which we discussed earlier, and since this discontinuity is unphysical, Tao did not
encounter it. When D = 0, the American convert should never be converted prior
to maturity.

In our analysis, we considered a fairly simple convert, an American zero coupon
convert, which can be converted to one unit of stock at any time at or prior to
maturity, and which pays an amount P , the principal, at maturity if the option
to convert is not exercised, so that the pay-off on the free boundary is S and that
at maturity is max (S, P ). This convert has only one free boundary, on which the
bond is exchanged for equity, and the addition of embedded call or put options
which are found in some converts [6, 17] would lead to additional free boundaries.

As we mentioned above, our analysis used an asymptotic expansion of the gov-
erning PDE. An alternative approach might be to use the PDE and associated
boundary and initial conditions to construct an integral equation formulation of
the problem, thereby decoupling the location of the free boundary from the pric-
ing of the convert. This approach has proven popular for American equity options
[10, 16, 18, 25, 20, 28, 38]. One integral equation formulation which might
be applied is of course the free boundary Green’s function method [19], using the
Green’s function we presented in [21, 23] for a convert under the Vasicek model,
although the corresponding Green’s function for CIR model remains elusive. How-
ever, the resulting integral equations would involve a triple integral over x, r and τ
rather than the double integrals found in [10, 16, 18, 25, 38] when this approach
was applied to American equity options, and this might make asymptotic analysis
of the integral equations problematic, although attempting this approach would
likely still be a worthwhile endeavor.
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