ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. LXXVI, 2 (2007)
p. 179 - 188

Some Comments on Injectivity and p-injectivity
R. Yue Chi Ming


Abstract.  A generalization of injective modules (noted GI-modules), distinct from p-injective modules, is introduced. Rings whose p-injective modules are GI are characterized. If M is a left GI-module, E = End (AM), then E/J(E) is von Neumann regular, where J(E) is the Jacobson radical of the ring E. A is semi-simple Artinian if, and only if, every left A-module is GI. If A is a left p. p., left GI-ring such that every non-zero complement left ideal of A contains a non-zero ideal of A, then A is strongly regular. Sufficient conditions are given for a ring to be either von Neumann regular or quasi-Frobenius. Quasi-Frobenius and von Neumann regular rings are characterized. Kasch rings are also considered.

Keywords:  injective; GI-module; p-injective; YJ-injective; von Neumann regular; quasi-Frobenius ring.

AMS Subject classification.  Primary:16D40, 16D50, 16E50 16D40, 16D50, 16E50.

Download:     Adobe PDF     Compressed Postscript      

Version to read:     Adobe PDF

Acta Mathematica Universitatis Comenianae
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295755 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2007, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE