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SOME COMPLEX MATRIX AND DETERMINANT
FUNCTIONAL EQUATIONS

I. B. RISTESKI and V. C. COVACHEV

Abstract. In this paper some linear functional equations are solved whose argu-

ments are complex commutative matrices or determinants. The results obtained
here supplement the monograph [3].

1. Introduction

First we will introduce the following notations.
In Section 2 Xi, Yi, etc. are complex commutative n×n matrices. We assume

that O is the zero matrix of appropriate dimension and I is the unit n×n matrix. fi

are functions of two n×n-matrix arguments taking values complex m×s matrices,
i.e., fi : Cn2 ×Cn2 → Cms. In Section 3 f, fi, . . . are complex functions of several
complex arguments.

In this paper we will use the same techniques for the solution of the functional
equations considered as those developed in [1], [2] and [4].

2. Functional Equations with Matrix Arguments

In this section we will prove the following results.

Theorem 2.1. The general measurable solution of the functional equation

f0(X1Y2 −X2Y1,X3Y4 −X4Y3)(2.1)

= f1(X1Y3 −X3Y1,X2Y4 −X4Y2) + f2(X1Y4 −X4Y1,X3Y2 −X2Y3),
where Xi,Yj (1 ≤ i, j ≤ 4) are complex commutative n × n matrices and fi

(0 ≤ i ≤ 2) are complex m× s matrix functions, is given by

f0(X,Y) =
n∑

i=1

n∑
j=1

Kijzij + A + B,

f1(X,Y) =
n∑

i=1

n∑
j=1

Kijzij + A,(2.2)

f2(X,Y) =
n∑

i=1

n∑
j=1

Kijzij + B,
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where Kij (1 ≤ i, j ≤ n), A and B are arbitrary complex constant m× s matrices,
and zij (1 ≤ i, j ≤ n) are entries of the matrix [zij ] = Z = X ·Y.

Proof. From Equation (2.1) we easily obtain

f2(U,V) = f0(U,V)−A,(2.3)
f1(U,V) = f0(U,V)−B,(2.4)

where A = f1(O,O), B = f2(O,O).
If we put (2.3) and (2.4) into (2.1) and introduce a new matrix function g by

the substitution

g(U,V) = f0(U,V)−A−B,(2.5)

we obtain the equation

g(X1Y2 −X2Y1,X3Y4 −X4Y3)(2.6)

= g(X1Y3 −X3Y1,X2Y4 −X4Y2) + g(X1Y4 −X4Y1,X3Y2 −X2Y3).

For the function g we successively derive the properties

g(O,O) = O, g(U,O) = O, g(O,U) = O

and, finally,

g(U,V) = −g(UV,−I).(2.7)

By putting X1 = Y2 = O, X2 = X3 = X4 = Y1 = I, Y3 = X, Y4 = −Y, from
Equation (2.6) we obtain

g(−I,−Y −X) = g(−I,−Y) + g(−I,−X)

or, by virtue of (2.7),

−g(X + Y,−I) = −g(X,−I)− g(Y,−I).

By introducing a new function

h(X) = −g(X,−I),(2.8)

we obtain the Cauchy functional equation

h(X + Y) = h(X) + h(Y).(2.9)

In [5] it is stated that the general continuous solution of the functional equation
(2.9) is

h(X) = A ·X ·B,(2.10)

where A is an arbitrary constant complex m × n matrix, and B is an arbitrary
constant complex n× s matrix.

The function (2.10) is a solution of Equation (2.9), but it is not the general
measurable solution. According to [6], the general measurable solution is given by

h(X) =
n∑

i=1

n∑
j=1

Kijxij ,(2.11)
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where Kij (1 ≤ i, j ≤ n) are arbitrary complex constant m × s matrices, and xij

(1 ≤ i, j ≤ n) are entries of the matrix [xij ] = X.
On the basis of the expressions (2.7), (2.8) and (2.11) we obtain

g(X,Y) =
n∑

i=1

n∑
j=1

Kijzij ,(2.12)

where zij (1 ≤ i, j ≤ n) are entries of the matrix [zij ] = Z = X ·Y.
Now, on the basis of the expressions (2.3), (2.4), (2.5) and (2.12) we have (2.2),

where Kij and zij have the same meaning as in (2.12).
Conversely, straightforward calculations show that the functions (2.2) satisfy the

functional equation (2.1). It is just here that the commutativity of the matrices is
used. �

Theorem 2.2. The general measurable solution of the functional equation

f0(X1Y2−X2Y1,Z2T3−Z3T2)+f1(X1Z2−X2Z1,T3Y2−T2Y3)

+ f2(X1T2−X2T1,Y3Z2−Y2Z3)+f3(T1Z2−T2Z1,Y3X2−Y2X3)(2.13)

+ f4(Y1T2−Y2T1,Z3X2−Z2X3)+f5(Z1Y2−Z2Y1,T3X2−T2X3) = O,

where Xi,Yi,Zi,Ti (1 ≤ i ≤ 3) are complex commutative n × n matrices and
fi (0 ≤ i ≤ 5) are complex m× s matrix functions, is given by

f0(X,Y) = −
n∑

i=1

n∑
j=1

Kijzij + A0,(2.14)

fr(X,Y) =
n∑

i=1

n∑
j=1

Kijzij + Ar (1 ≤ r ≤ 5),(2.15)

are arbitrary complex constant m× s matrices, zij (1 ≤ i, j ≤ n) are entries of the
matrix [zij ] = Z = X ·Y, and Ai (0 ≤ i ≤ 5) are constant complex m× s matrices

such that
5∑

i=0

Ai = O.

Proof. From Equation (2.2) by suitable substitutions we obtain

5∑
i=0

Ai = O,(2.16)

where Ai = fi(O,O) (0 ≤ i ≤ 5), and

f0(X,Y) = −f2(X,Y)−A1 −A3 −A4 −A5,

f1(X,Y) = −f2(X,−Y)−A0 −A3 −A4 −A5,

f3(X,Y) = −f2(X,−Y)−A0 −A1 −A4 −A5,

f4(X,Y) = −f2(X,−Y)−A0 −A1 −A3 −A5,

f5(X,Y) = f2(X,Y)−A2 + A5.

(2.17)
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On the basis of the expressions (2.17) and (2.16), if we introduce a new function
f by the substitution

f(X,Y) = f2(X,Y)−A2,(2.18)

then Equation (2.2) becomes

f(X1Y2−X2Y1,Z2T3−Z3T2)+f(X1Z2−X2Z1,T2Y3−T3Y2)

− f(X1T2−X2T1,Y3Z2−Y2Z3)+f(T1Z2−T2Z1,Y2X3−Y3X2)(2.19)

+ f(Y1T2−Y2T1,Z2X3−Z3X2)−f(Z1Y2−Z2Y1,T3X2−T2X3) = O.

Clearly, we have

f(O,O) = O(2.20)

and

f(X,−Y) = −f(X,Y).(2.21)

On the basis of the above expression (2.21), Equation (2) becomes

f(X1Y2−X2Y1,Z2T3−Z3T2)+f(X1Z2−X2Z1,T2Y3−T3Y2)

+ f(X1T2−X2T1,Y2Z3−Y3Z2)+f(T1Z2−T2Z1,Y2X3−Y3X2)(2.22)

+ f(Y1T2−Y2T1,Z2X3−Z3X2)+f(Z1Y2−Z2Y1,T2X3−T3X2) = O.

Equation (2) has been considered by Gheorghiu [5] and he has proved that the
function f , beside the properties (2.20) and (2.21), has the following properties

f(X,O) = O, f(O,Y) = O, f(−X,Y) = −f(X,Y).

By using the above properties of the function f and by putting X1 = U, Z2 = V,
Y2 = T3 = I, Y1 = Z1 = T1 = X2 = T2 = X3 = Y3 = Z3 = O into (2), we
obtain

f(U,V) = −f(UV,−I).(2.23)

Next, we derive

f(T1 − Z1,−I) + f(Y1 −T1,−I) + f(Z1 −Y1,−I) = O

or, taking into account the properties of the function f ,

f(T1 − Z1,−I)− f(T1 −Y1,−I)− f(Y1 − Z1,−I) = O.

By introducing the new function

g(X) = −f(X,−I),(2.24)

we obtain for the function g the following matrix functional equation

g(T1 − Z1)− g(Y1 − Z1)− g(T1 −Y1) = O.

If we put Y1 = O, Z1 = −Y, T1 = X, we obtain the Cauchy functional equation

g(X + Y) = g(X) + g(Y).
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The general measurable solution of this equation is given by

g(X) =
n∑

i=1

n∑
j=1

Kijxij ,(2.25)

where Kij (1 ≤ i, j ≤ n) are arbitrary constant complex m × s matrices, and xij

(1 ≤ i, j ≤ n) are entries of the matrix [xij ] = X.
Now, by using the expressions (2.25), (2.24) and (2.23), we obtain

f(X,Y) =
n∑

i=1

n∑
j=1

Kijzij ,(2.26)

where zij (1 ≤ i, j ≤ n) are entries of the matrix [zij ] = Z = X ·Y.
On the basis of the expression (2.18) we have

f2(X,Y) = f(X,Y) + A2, f2(X,−Y) = −f(X,Y) + A2,

i.e., by virtue of the expressions (2.26), (2.16) and (2.17) we obtain (2.14), (2.15).
We can check the converse statement by a direct substitution of the functions

(2.14), (2.15) into Equation (2.2).
Thus the theorem is proved. �

3. Functional Equations with Determinant Arguments

In order to formulate our next theorem we will introduce some more notations.
For ∆1 = det [xij ]n×n, ∆2 = det [yij ]n×n and 1 ≤ i ≤ n we denote

∆1i =

∣∣∣∣∣∣∣∣∣
x11 x12 · · · x1n

...
xn−1,1 xn−1,2 · · · xn−1,n

yi1 yi2 · · · yin

∣∣∣∣∣∣∣∣∣

∆2i =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y11 y12 · · · y1n

...
yi−1,1 yi−1,2 · · · yi−1,n

xn1 xn2 · · · xnn

yi+1,1 yi+1,2 · · · yi+1,n

...
yn1 yn2 · · · ynn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For i > n we assume yij ≡ yi−n,j .

Theorem 3.1. The general continuous solution of the equation

f0(∆1,∆2) =
n∑

i=1

fi(∆1i,∆2i),(3.1)
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where fi : C2 → C (0 ≤ i ≤ n), is given by the formulae

f0(u, v) = Cuv +
n∑

i=1

Ai,(3.2)

fr(u, v) = Cuv + Ar (1 ≤ r ≤ n),

where Ai (1 ≤ i ≤ n) and C are arbitrary complex constants.

Proof. From Equation (3.1) by suitable substitutions we obtain

f0(x, y) = fi(x, y) +
n∑

j=1
j 6=i

Aj (1 ≤ j ≤ n),(3.3)

where Ai = fi(0, 0) (1 ≤ i ≤ n).
If we substitute the functions fr (1 ≤ r ≤ n) determined by (3.3) into Equa-

tion (3.1) and introduce a new function f by the substitution

f(u, v) = f0(u, v)−
n∑

i=1

Ai,(3.4)

then Equation (3.1) becomes

f(∆1,∆2) =
n∑

i=1

f(∆1i,∆2i).(3.5)

Clearly, f(0, 0) = 0. Next, we successively derive f(u, 0) = 0 and f(0, u) = 0.
At the end, by putting xii = 1 (1 ≤ i ≤ n − 2), yn−j+1,j = 1 (1 ≤ j ≤ n − 2),

xn−1,n−1 = x1, xn−1,n = y1, xn,n−1 = x2, xnn = y2, y1,n−1 = x3, y1n = y3,
y2,n−1 = x4, y2n = y4 and substituting all the other variables by zero, on the
basis of the previous properties of the function f , Equation (3.5) takes the form

f(x1y2 − x2y1, x3y4 − x4y3)(3.6)

= f(x1y3 − x3y1, x2y4 − x4y2) + f(x1y4 − x4y1, x3y2 − x2y3).
From the last equation we deduce

f(u, v) = −f(uv,−1).(3.7)

If we put into (3.6) x1 = y2 = 0, x2 = x3 = x4 = y1 = 1, y3 = x, y4 = −y, we
derive the relation

f(−1,−y − x) = f(−1,−y) + f(−1,−x)

or, by virtue of (3.7),

−f(x + y,−1) = −f(x,−1)− f(y,−1).

If we introduce the new function

g(x) = −f(x,−1),(3.8)

the last equation is reduced to the Cauchy functional equation

g(x + y) = g(x) + g(y),
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whose general continuous solution is

g(z) = Cz,(3.9)

where C is an arbitrary complex constant.
On the basis of the expressions (3.9), (3.8), (3.7), (3.4) and (3.3), we obtain the

formulae (3.2).
Now we will consider the following identity∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x11 x12 · · · x1n 0 0 · · · 0
x21 x22 · · · x2n 0 0 · · · 0
...

xn−1,1 xn−1,2 · · · xn−1,n 0 0 · · · 0
xn1 xn2 · · · xnn xn1 xn2 · · · xnn

y11 y12 · · · y1n y11 y12 · · · y1n

y21 y22 · · · y2n y21 y22 · · · y2n

...
yn1 yn2 · · · ynn yn1 yn2 · · · ynn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≡ 0.(3.10)

If we develop the determinant of the identity (3.10) by the Laplace rule and if we

add to and subtract from the so obtained identity
n∑

i=1

Ai, we conclude that the

functions (3.2) are really a solution of Equation (3.1).
Thus the theorem is completely proved. �

Now, we will give the following definitions which are necessary for the next
theorem.

Definition 3.2. If m and n are integers greater than one and [xij ] is an mn×n
matrix, we denote by ∆(i, i+1, . . . , i+k−2, r, i+k, . . . , n+ i−1) the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi1 xi2 · · · xin

xi+1,1 xi+1,2 · · · xi+1,n

...
xi+k−2,1 xi+k−2,2 · · · xi+k−2,n

xr1 xr2 · · · xrn

xi+k,1 xi+k,2 · · · xi+k,n

...
xn+i−1,1 xn+i−1,2 · · · xn+i−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Definition 3.3. For m,n and [xij ] as above and f : Cm → C and 0 ≤ j < n
we define the operator Ξn,rn+j by

Ξn,rn+jf
(
∆(1, . . . , n− 1, n), . . . ,∆(rn + 1, . . . , rn + j − 1, rn + j,

rn + j + 1, . . . , (r + 1)n), . . . ,∆((m− 1)n + 1, . . . ,mn)
)

= f
(
∆(1, . . . , n− 1, rn + j), . . . ,∆(rn + 1, . . . , rn + j − 1, n,

rn + j + 1, . . . , (r + 1)n), . . . ,∆((m− 1)n + 1, . . . ,mn)
)
.
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Theorem 3.4. The general continuous solution of the operator functional equa-
tion

af
(
∆(1, . . . , n− 1, n), . . . ,∆((m− 1)n + 1, . . . ,mn)

)
(3.11)

=
mn∑

r=n+1

Ξn,rf
(
∆(1, . . . , n− 1, n), . . . ,∆((m− 1)n + 1, . . . ,mn)

)
(f : Cm → C, a is a complex parameter) is given by

f(u1, u2, . . . , um) = C
m∏

i=1

ui if a = m− 1,

f(u1, u2, . . . , um) = const if a = n(m− 1),

f(u1, u2, . . . , um) ≡ 0 in all other cases,

where C is an arbitrary complex constant.

Proof. a) First we will prove the theorem for a = m− 1. For this purpose we
will need the following lemmas.

Lemma 3.5. If at least one of the variables ui (1 ≤ i ≤ m−1) is equal to zero,
then the following equality holds

f(0, u1, u2, . . . , um−1) ≡ 0.

Proof of Lemma 3.5. By putting

xij = x (1 ≤ i ≤ mn; 1 ≤ j ≤ n),

Equation (3.11) becomes
f(0, 0, . . . , 0) = 0.

If we introduce the following substitutions

xkn+1,1 = xk (0 ≤ k ≤ m− 1), xkn+i,i = 1 (0 ≤ k ≤ m− 1; 2 ≤ i ≤ n)

and if we replace all the other variables by 0, then from (3.11) it follows that

f(0, 0, x2, x3, . . . , xm−1) + f(0, x1, 0, x3, . . . , xm−1)

+ . . . + f(0, x1, x2, . . . , xm−2, 0) = 0.
(3.12)

Let Em−1 = {1, 2, . . . ,m − 1} and let Sr (0 < r ≤ m − 1) be a subset of the set
Em−1 which contains r elements.

Now, we suppose that

f(0, v1, v2, . . . , vm−1) = 0(3.13)

holds, where

vi =

{
0, i ∈ Sr,

yi, i ∈ Em−1 \ Sr.

Under this assumption, we will show that

f(0, w1, w2, . . . , wm−1) = 0,
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where

wi =

{
0, i ∈ Sr−1,

yi, i ∈ Em−1 \ Sr−1

if the hypothesis (3.13) is true.
By putting xi = wi (1 ≤ i ≤ m − 1) into (3.12), according to the hypothesis

(3.13) we obtain
(r − 1)f(0, w1, w2, . . . , wm−1) = 0.

Consequently, we proved by induction that

f(0, u1, u2, . . . , um−1) = 0

if exactly r (0 < r ≤ m− 1) elements among ui (1 ≤ i ≤ m) are equal to zero. �

Lemma 3.6. If at least one of the variables ui (1 ≤ i ≤ m−1) is equal to zero,
then

f(u1, u2, . . . , um−1, 0) = 0.(3.14)

Proof of Lemma 3.6. By putting

xn,k = 0 (1 ≤ k ≤ n), x(m−1)n+i,j = 0 (1 ≤ i ≤ n− 1; 1 ≤ j ≤ n),

xmn,n = 1, xni+k,k = 1 (0 ≤ i ≤ m− 2; 2 ≤ k ≤ n),

xni+1,1 = ui+1 (0 ≤ i ≤ m− 2)

and according to Lemma 3.5, from Equation (3.11) there follows (3.14). �

Now we will continue by induction with respect m. If m = 2, one can argue
as in Theorem 3.1. Thus we assume that m > 2 and that the general measurable
solution of the functional equation

(m− 2)f
(
∆(1, 2, . . . , n− 1, n), . . . ,∆((m− 2)n + 1, . . . , (m− 1)n)

)
(3.15)

=
(m−1)n∑
r=n+1

Ξn,rf
(
∆(1, 2, . . . , n−1, n), . . . ,∆((m−2)n + 1, . . . , (m−1)n)

)
is given by

f(u1, u2, . . . , um−1) = C
m−1∏
i=1

ui,(3.16)

where C is an arbitrary complex constant.
If we put into Equation (3.11)

xn,k = x(m−1)n+1,k (1 ≤ k ≤ n), x(m−1)n+i,i = 1 (2 ≤ i ≤ n− 1),
xmn,n · x(m−1)n+1,1 = 1, x(m−1)n+i,j = 0 (2 ≤ i ≤ n; 1 ≤ j ≤ i− 1),

f(x1, x2, . . . , xm−1, 1) ≡ F (x1, x2, . . . , xm−1),

then by virtue of Lemma 3.6 we obtain Equation (3).
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If we take into account (3.16), then it follows that

f(x1, x2, . . . , xm−1, 1) = C
m−1∏
i=1

xi.(3.17)

If we substitute into Equation (3.11)

xni+1,1 = yi+1 (0 ≤ i ≤ m− 2), xmn,n = ym,

xni+k,k = 1 (0 ≤ i ≤ m− 2; 2 ≤ k ≤ n), xn(m−1)+k,k = 1 (1 ≤ k ≤ n− 1),

and if we replace all the other variables by zero, according to Lemma 3.5 we obtain

f(y1, y2, . . . , ym) = f(y1 · ym, y2, . . . , ym−1, 1).(3.18)

From (3.17) and (3.18) it follows that

f(y1, y2, . . . , ym) = C
m∏

i=1

yi.(3.19)

Now we will show that, conversely, every function of the form (3.19) is really
a solution of Equation (3.11). For this purpose, we will consider the following
identity

D(j) =
∣∣∣∣ X ©n−1,n

X̃ X̃

∣∣∣∣ = 0,(3.20)

where

X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
xn−1,1 xn−1,2 · · · xn−1,n

 , X̃ =


xn1 xn2 · · · xnn

xnj+1,1 xnj+1,2 · · · xnj+1,n

...
xnj+n,1 xnj+n,2 · · · xnj+n,n


and ©n−1,n is the zero (n− 1)× n matrix.

According to the expression (3.20), we conclude that the following identity holds
m−1∑
j=1

D(j)
m−1∏
i=1

i 6=j

∆(ni + 1, ni + 2, . . . , ni + n) = 0.

By evaluating the determinant D(j) according to the Laplace rule, we show that
the function given by (3.19) is really a solution of Equation (3.11). This completes
the proof of Theorem 3.4 for a = m− 1.

b) Now we will pass on to the proof of Theorem 3.4 for a = n(m − 1).
It can be easily checked that the constant is a solution of Equation (3.11) if
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a = n(m − 1). Now, we will prove the converse, i.e., that every solution of the
functional equation (3.11) for a = n(m− 1) is a constant.

If we put

xni+1,1 = ui+1 (0 ≤ i ≤ m− 1), xnk+j,j = 1 (0≤k≤m− 1; 2 ≤ j ≤ n),

then Equation (3.11) becomes

n(m−1)f(u1, u2, . . . , um)

= (m−1)f(u1, u2, . . . , um) + (n−1)(m−1)f(0, 0, . . . , 0),

so that

f(u1, u2, . . . , um) = f(0, 0, . . . , 0) = const.

For xij = u (1 ≤ i ≤ mn; 1 ≤ j ≤ n) from (3.11) we obtain

n(m− 1)f(0, 0, . . . , 0) = n(m− 1)f(0, 0, . . . , 0),

which means that

f(0, 0, . . . , 0)

may be different from zero. Thus Theorem 3.4 is proved for a = n(m− 1).
c) At the end, we will prove Theorem 3.4 for a 6= m− 1 and a 6= n(m− 1). By

putting xij = u (1 ≤ i ≤ mn; 1 ≤ j ≤ n), from Equation (3.11) we obtain

af(0, 0, . . . , 0) = n(m− 1)f(0, 0, . . . , 0).

Since a 6= n(m− 1), we conclude that

f(0, 0, . . . , 0) = 0.(3.21)

If we put xni+1,1 = ui+1 (0 ≤ i ≤ m− 1), xnk+j,j = 1 (0 ≤ k ≤ m− 1; 2 ≤ j ≤ n),
then Equation (3.11) becomes

[a− (m− 1)]f(u1, u2, . . . , um) = (n− 1)(m− 1)f(0, 0, . . . , 0).(3.22)

Since a 6= m−1, on the basis of the last two equalities (3.21) and (3.22) we obtain

f(u1, u2, . . . , um) ≡ 0,

which means that Theorem 3.4 is completely proved. �
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