
Acta Math. Univ. Comenianae
Vol. LXXV, 2(2006), pp. 241–252

241

A CLASSIFICATION OF TRIANGULAR MAPS
OF THE SQUARE

V. KORNECKÁ

Abstract. It is well-known that, for a continuous map ϕ of the interval, the con-
dition P1 ϕ has zero topological entropy, is equivalent, e.g., to any of the following:
P2 any ω-limit set contains a unique minimal set; P3 the period of any cycle of
ϕ is a power of two; P4 any ω-limit set either is a cycle or contains no cycle; P5
if ωϕ(ξ) = ωϕ2 (ξ), then ωϕ(ξ) is a fixed point; P6 ϕ has no homoclinic trajectory;
P7 there is no countably infinite ω-limit set; P8 trajectories of any two points are
correlated; P9 there is no closed invariant subset A such that ϕm|A is topologically
almost conjugate to the shift, for some m ≥ 1. In the paper we exhibit the rela-
tions between these properties in the class (x, y) �→ (f(x), gx(y)) of triangular maps
of the square. This contributes to the solution of a longstanding open problem of
Sharkovsky.

1. Introduction

For a continuous map ϕ of the interval there is a long list of properties equivalent
to zero topological entropy. About 40 of them are applicable to triangular (or,
skew-product) maps but only few of them are equivalent in this more general
setting. In the eighties, A. N. Sharkovsky proposed the problem of classification
of the triangular maps of the square with respect to such properties. More than
30 conditions were already considered, cf., e.g., [1], [5], [6], [7], [8] and [9]. In
this paper we consider another four properties that were not studied before in this
context:

• if ωϕ(z) = ωϕ2(z), then ωϕ(z) is a fixed point
• ϕ has no countably infinite ω-limit set
• the trajectories of any two points are correlated
• for a closed invariant set A and m ≥ 1, ϕm|A is not topologically almost

conjugate to the shift

We exhibit the relations between them and five other properties that already have
been studied. Using this and the results obtained by other authors it is now
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possible to find the position of any of these conditions among more than 30 other
ones.

The paper is organized as follows. In Section 2 we introduce basic terminology.
Section 3 contains our main Theorem 3.1 summarizing the old and new relations
between the considered properties. In Section 4 we prove new implications and
give several examples disproving other implications. Proof of the main theorem is
in Section 5 where all relations are summarized in a table.

2. Basic definitions and notation

Denote by C(X) the class of continuous maps X → X of a compact metric space
(X, ρ); in the sequel X will be either the unit interval I = [0, 1] or the unit square
I2. For ϕ ∈ C(X), let ϕn denote the n-th iterate of ϕ. The set of cluster points of
the trajectory {ϕn(ξ)}∞n=0 of a ξ ∈ X is the ω-limit set ωϕ(ξ) of ξ. An M ⊂ X is
a minimal set, if M = ωϕ(ξ), for any ξ ∈ M .

Denote by Fix(ϕ) the set of fixed points, and by Per(ϕ) the set of periodic points
of ϕ. A point ξ ∈ X is in the set CR(ϕ) of chain recurrent points of ϕ if for any
ε > 0, there exists an ε-chain from ξ into itself, i.e. there is a sequence of points
{ξi}n

i=0, with ξ0 = ξn = ξ and ρ(ξi+1, ϕ(ξi)) < ε for any i ∈ {0, . . . , n − 1}.
A set A ⊂ X is (n, ε)-separated if, for any distinct points ξ1, ξ2 ∈ A, there exists

i such that 0 ≤ i < n and ρ(ϕi(ξ1), ϕi(ξ2)) > ε. For Y ⊂ X, denote by sn(ε, Y, ϕ)
the maximum possible number of points in an (n, ε)-separated subset of Y . The
topological entropy of ϕ with respect to Y and the topological entropy of the map
ϕ are defined by

h(ϕ|Y ) = lim
ε→0

lim sup
n→∞

1
n

log sn(ε, Y, ϕ), and h(ϕ) = h(ϕ|X).

Let ξ ∈ Fix(ϕ), and let ξn, n = 1, 2, . . ., be distinct points in X such that
ϕ(ξn+1) = ξn, for any n, ϕ(ξ1) = ξ, and limn→∞ ξn = ξ. Then {ξn}∞n=1 is a
homoclinic trajectory related to the point ξ. A homoclinic trajectory related to a
periodic orbit is defined similarly, cf., e.g., [2]. Trajectories of the points ξ, ζ ∈ X
are correlated, if either ωϕ(ξ) or ωϕ(ζ) is a fixed point or

ωϕ×ϕ(ξ, ζ) �= ωϕ(ξ) × ωϕ(ζ),

where the map ϕ × ϕ : X × X → X × X is given by (ξ, ζ) �→ (ϕ(ξ), ϕ(ζ)).
Denote by (Σ, σ) the shift of the space of sequences of two symbols. Thus,

Σ = {0, 1}N, and σ : ξ1ξ2 . . . �→ ξ2ξ3 . . .. Then Σ is a compact metric space with
metric ρ(ξ, ζ) = max{1

i ; ξi �= ζi}. Denote by 0n and 1n the finite sequence of n
zeros or ones, respectively, and define 0∞ and 1∞ similarly. A map ϕ ∈ C(X) is
topologically almost conjugate to the shift, if there exist a continuous surjective
map ψ : X → Σ, such that ψ ◦ ϕ = σ ◦ ψ and any point ξ ∈ Σ has at most two
preimages in X.
In the sequel we denote by N the set of positive integers, and by N0 = N ∪ {0}.
Other terminology is given in the remainder of the paper, or can be found in
standard books like [2], [12].

The following properties of ϕ are considered in this paper:
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P1 h(ϕ) = 0;
P2 any ω-limit set contains a unique minimal set;
P3 the period of any cycle of ϕ is a power of two;
P4 any ω-limit set either is a cycle or contains no cycle;
P5 if ωϕ(ξ) = ωϕ2(ξ), then ωϕ(ξ) is a fixed point;
P6 ϕ has no homoclinic trajectory;
P7 there is no infinite countable ω-limit set;
P8 trajectories of any two points are correlated;
P9 for any closed invariant set A and any m ∈ N, the map ϕm|A cannot be

topologically almost conjugate to the shift.

The following proposition summarizes known results, see, e.g., [2], [12].

Proposition 2.1. For a ϕ ∈ C(I), the properties P1 –P9 are mutually equiva-
lent.

3. The Main Theorem

We denote by T the class of triangular maps of the square. Thus, T ⊂ C(I2) is
the family of maps F such that F : (x, y) �→ (f(x), gx(y)). The map f : I → I
is the base of F , and gx : Ix → I maps the fibre Ix = {x} × I to I. We denote
by π1, π2 the canonical projections (x, y) �→ x resp. (x, y) �→ y of I2 onto I. The
following is our main result.

Theorem 3.1. The relations between the properties P1 − P9 of a map F ∈ T
are displayed by the following graph. The particular implications are represented
by double arrows. There are no other implications except for these following by
transitivity.

1 2

3 4 5

6 7 8

9

Theorem 3.1 contains results that has been already proved by other authors. They
are summarized in the following

Proposition 3.2. (See, e.g., [1], [5], [6], [7], [8] and [10].) The relations
between properties P1 - P4, and P6 of an F ∈ T are displayed by the following
graph. The particular implications are represented by double arrows. There are no
other implications except for these following by transitivity.

1

3 4

6

2
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4. Properties of triangular maps

Lemma 4.1. Let F ∈ T with base map f , and let x̄ ∈ Fix(f). If ωF (x, y) ⊂ Ix̄,
for some (x, y) ∈ I2, then ωF (x, y) ⊂ CR(F |Ix̄).

Proof. Let x̄ ∈ I be a fixed point of the base f . For simplicity, consider F |Ix̄

as a map I → I. Take a point (x, y) ∈ I2 such that ωF (x, y) ⊂ Ix̄. Denote by
{Fn(x, y)}∞n=0 = {(xn, yn)}∞n=0 the trajectory of (x, y). Take (x̄, ȳ) ∈ ωF (x, y) ar-
bitrary. We show that ȳ ∈ CR(F |Ix̄). Since limn→∞ xn = x̄ and (x̄, ȳ) ∈ ωF (x, y),
for any ε > 0 there is an i ∈ N such that, for any j ≥ i,

||gxj
− gx̄|| < ε, and |ȳ − yi| < ε,

and there is a k > i such that |ȳ − yk| < ε. Then

|ȳ − gxk−1(. . . (gxi+1(gxi
(ȳ))) . . .)| < ε,

and
{ȳ, gxi

(ȳ), gxi+1(gxi
(ȳ)), . . . , gxk−1(. . . (gxi

(ȳ)) . . .)}
is an ε-chain from ȳ to ȳ. Hence ȳ ∈ CR(F |Ix̄). Consequently, ωF (x, y) is a subset
of the set of chain recurrent points on Ix̄. �

Let ϕ ∈ C(I). An interval J ⊂ I is periodic if there is an n ∈ N such that
ϕn(J) = J and int(J) ∩ intϕi(J) = ∅ for any i ∈ {1, . . . , n − 1}. A set S ⊂ I is
a solenoid for ϕ if there is a sequence {Ik}∞k=1 of compact periodic intervals such
that

S =
∞⋂

k=1

2k−1⋃
n=0

ϕn(Ik), Ik ⊃ Ik+1, Ik has period 2k, k ≥ 1.

Lemma 4.2. (See, e.g., [12].) Let ϕ ∈ C(I) with h(ϕ) = 0. Then CR(ϕ) =
Per(ϕ)∪

⋃
t∈T St where every St is a minimal solenoid (i.e., a solenoid which is a

minimal set).

Lemma 4.3. (Cf. [4].) Let ϕ ∈ C(I) with h(ϕ) = 0, and let ωϕ(x) be infinite.
Let U = [u, v] be the convex hull of ωϕ(x), and V = [a, b] the minimal compact
invariant interval containing U . Then

(i) V \ U contains no fixed point of ϕ;
(ii) there is an interval J relatively open in I such that U ⊂ J , J \ U contains

no fixed point of ϕ, and ϕ(J) ⊂ J .

Lemma 4.4. P2 ⇒ P5: Assume any ω-limit set of an F ∈ T contains a
unique minimal set. If ωF (z) = ωF 2(z), for a z ∈ I2, then ωF (z) is a fixed point.

Proof. Assume there is a z = (x, y) ∈ I2 such that ωF (z) = ωF 2(z) and
ωF (z) contains more than one point. If the base map f has positive topologi-
cal entropy then, by Proposition 2.1, f and consequently, F has an ω-limit set
containing two minimal sets. So assume h(f) = 0. Then, by Proposition 2.1,
ωf (x) = ωf2(x) = {x̄}, for some x̄ ∈ Fix(f). Hence, ωF (z) ⊂ Ix̄ and

ωF (z) ⊂ CR(F |Ix̄),(1)
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by Lemma 4.1. Moreover, we may assume that h(F |Ix̄) = 0 since otherwise, by
Proposition 2.1, F would have an ω-limit set containing more then one minimal
subset. Then ωF (z) contains no solenoid S. Indeed, if

S ⊂ ωF (z),(2)

where S is a solenoid then there are disjoint compact intervals L0, L1 ⊂ Ix̄ forming
a periodic orbit of period 2 such that S ⊂ L0 ∪L1. Apply Lemma 4.3 to F 2|Ix̄ to
obtain relatively open disjoint intervals Ji ⊃ Li, i ∈ {0, 1}, i.e.

S ⊂ L0 ∪ L1 ⊂ J0 ∪ J1.(3)

Denote

δi = ρ(F 2(J i), I \ Ji) > 0, i ∈ {0, 1}(4)

and put
δ = min{δ0, δ1}.

Since F is continuous, there is some n0 ∈ N0 such that

||gfn(x) − gx̄|| < δ, for any n ≥ n0.(5)

By (2), (3), (4) and (5), there is some m ≥ n0, such that π2(Fm(z)) ∈ J0 and
ωF 2(Fm(z)) ⊂ {x̄} × J0. Since J0 is periodic of period 2 then ωF (z) �= ωF 2(z),
which is a contradiction. Thus, by (1) and Lemma 4.3,

ωF (z) ⊂ Per(F |Ix̄).(6)

To finish the proof it suffices to show that ωF (z) contains more than one cycle.
So assume that ωF (z) is a cycle. Since h(F |Ix̄) = 0 then, by Proposition 2.1, its
period is 2n for some n ∈ N0. By the hypothesis ωF (z) is not a fixed point hence,
ωF (z) �= ωF 2(z) which is a contradiction. �

Lemma 4.5. P5 ⇒ P8: Let F ∈ T . If ωF (z) = ωF 2(z) implies that ωF (z) is
a fixed point, then the trajectories of any two points are correlated.

Proof. Assume that, for any z ∈ I2, ωF (z) = ωF 2(z) implies that ωF (z) is a
fixed point. Take z1, z2 ∈ I2 such that neither ωF (z1) nor ωF (z2) is a fixed point.
Then ωF (z1) �= ωF 2(z1) and ωF (z2) �= ωF 2(z2). Let

z̄1 ∈ ωF (z1) \ ωF 2(z1), z̄2 ∈ ωF (z2) \ ωF 2(F (z2)).

Then (z̄1, z̄2) ∈ ωF (z1) × ωF (z2).
It suffices to show that (z̄1, z̄2) �∈ ωF×F (z1, z2). Assume the contrary. Then

(z̄1, z̄2) is a cluster point of the sequence

{(F × F )n(z1, z2)}∞n=0 = {(Fn(z1), Fn(z2))}∞n=0,

and consequently, a cluster point of either

{(F 2n(z1), F 2n(z2))}∞n=0 or {(F 2n+1(z1), F 2n+1(z2))}∞n=0.

Since z̄1 �∈ ωF 2(z1), (z̄1, z̄2) cannot be a cluster point of {(F 2n(z1), F 2n(z2))}∞n=0.
Similarly, since z̄2 �∈ ωF 2(F (z2)), (z̄1, z̄2) cannot be a cluster point of the sequence
{(F 2n+1(z1), F 2n+1(z2))}∞n=0. �
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Proposition 4.6. (Cf. [10].) Let F ∈ T , with base f . Then

h(f) + sup
x∈I

h(F |Ix) ≥ h(F ) ≥ max{h(f), sup
x∈I

h(F |Ix)}.

Lemma 4.7. P8 �⇒ P5, P8 �⇒ P4, P1 �⇒ P5: There is an F ∈ T such that
(i) h(F ) = 0,
(ii) there is an ω-limit set which is not a cycle but contains a cycle,
(iii) there is a point z ∈ I2, such that ωF (z) = ωF 2(z) and ωF (z) is not a fixed

point,
(iv) trajectories of any two points are correlated.

Proof. Our construction of F (x, y) = (f(x), gx(y)) is inspired by [8]. Let

f(x) =

⎧⎨
⎩

0 for x = 0,
1/2i+2 for x ∈

(
1/2i+1, 1/2i+1 + 1/2i+2

]
,

x − 1/2i+1 for x ∈
(
1/2i+1 + 1/2i+2, 1/2i

]
,

for any i ∈ N0. For δ ∈ (0, 1), let τδ, τ
∗
δ ∈ C(I) be given by

τδ(y) =
{

y + δ for y ∈ [0, 1 − δ],
1 for y ∈ (1 − δ, 1],(7)

τ∗
δ (y) =

{
0 for y ∈ [0, δ),
y − δ for y ∈ [δ, 1].

Let g0 be the identity map I → I. Let n0 = 0, and ni = ni−1 + 2i+1, for i ∈ N.
For any n ∈ N0 and y ∈ I, put

gfn(1)(y) =
{

τ1/2i(y) for ni ≤ n < 1
2 (ni + ni+1),

τ∗
1/2i(y) for 1

2 (ni + ni+1) ≤ n < ni+1,
(8)

and extend gx linearly for any x ∈ I.
Since f and F |Ix are monotone, h(f) = h(F |Ix) = 0 and, by Proposition 4.6,

h(F ) = 0. This proves (i) Since ωF (x, y) = ωF 2(x, y) = {0} × I, but ωF (x, y) /∈
Fix(F ) whenever x ∈ I \ {0} and y ∈ I, the map F satisfies (ii) and (iii).

It remains to prove (iv). Assume ωF (x1, y1), ωF (x2, y2) are not fixed points. In
particular, we have x1, x2 �= 0. It is easy to see that any point in (0, 1] is eventually
mapped by f onto an image of 1. Hence, there are j1 ≤ k1 and j2 ≤ k2 ∈ N0 such
that

f j1(x1) = fk1(1) and f j2(x2) = fk2(1).(9)

There is an i0 ∈ N0, such that

k1, k2 ≤ 1
2
(ni0−1 + ni0).(10)

Then, by (7), (8), (9) and (10),

Fni0−k1+j1(x1, y1) = (fni0 (1), 0), and

Fni0−k2+j2(x2, y2) = (fni0 (1), 0).
(11)

Without loss of generality, we may assume that k1 − j1 ≥ k2 − j2. Put

k = k1 − j1 − (k2 − j2).(12)
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Then, by (11) and (12),

Fni0−k2+j2(x1, y1) = F k(fni0 (1), 0) = F k+ni0−k2+j2(x2, y2).(13)

Thus, (x1, y1) is eventually mapped by F onto an image of (x2, y2). Then, by (7),
(8) and (13),

|π2(Fm(x1, y1)) − π2(Fm(x2, y2))| ≤ k
1
2i

,

whenever m ≥ ni0 − k2 + j2 and m ≥ ni, i ∈ N. For m → ∞,

|π2(Fm(x1, y1)) − π2(Fm(x2, y2))| → 0,

so

ωF×F ((x1, y1), (x2, y2)) = {((0, ȳ), (0, ȳ))|ȳ ∈ I}.(14)

It is easy to see that

ωF (x1, y1) × ωF (x2, y2) = ({0} × I) × ({0} × I).(15)

Thus, by (14) and (15),

ωF×F ((x1, y1), (x2, y2)) �= ωF (x1, y1) × ωF (x2, y2),

and trajectories of (x1, y1), (x2, y2) are correlated. �

Lemma 4.8. P1 �⇒ P8: There is F ∈ T with h(F ) = 0 and two points in I2

whose trajectories are not correlated.

Proof. We use modified triangular map from Lemma 4.7. Put f(x) = 1
2x. For

δ ∈ (0, 1), let τδ, τ
∗
δ : I �→ I be as in Lemma 4.7. Let n0 = 0, and ni = ni−1 + 4i

for i ∈ N. Let

gfn(1)(y) =
{

τ1/4i+1(y), for ni ≤ n < 1
2 (ni + ni+1),

τ∗
1/4i+1(y), for 1

2 (ni + ni+1) ≤ n < ni+1,

and

gfn( 3
4 )(y) =

{
τ1/2i+1(y), for ni + j2i+1 ≤ n < ni + 2i + j2i+1,
τ∗
1/2i+1(y), for ni + 2i + j2i+1 ≤ n < ni + 2i+1 + j2i+1,

for any n ∈ N0 and any j, 0 ≤ j < 2i+1. Put g0(y) = y and extend gx linearly for
any x ∈ I.

Since f and F |Ix are monotone, h(f) = h(F |Ix) = 0 for any x ∈ I and conse-
quently, by Proposition 4.6, h(F ) = 0. We show that there are points z1, z2 ∈ I2

whose trajectories are not correlated. Denote

Ii = (f
1
2 (ni+ni+1)(1), fni(1)], I∗i = (fni+1(1), f

1
2 (ni+ni+1)(1)], i ∈ N0.

For any j, 0 ≤ j < 2i+1, let

Ji,j = (fni+2i+j2i+1
(1), fni+j2i+1

(1)], J∗
i,j = (fni+2i+1+j2i+1

(1), fni+2i+j2i+1
(1)].

Thus, Ji,j , J
∗
i,j are subintervals of Ii ∪ I∗i . Then, for any i ∈ N0,

gfm(1) =
{

τ1/4i+1 if fm(1) ∈ Ii,
τ∗
1/4i+1 if fm(1) ∈ I∗i .
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For any i ∈ N0, and any j, 0 ≤ j < 2i+1,

gfm( 3
4 ) =

{
τ1/2i+1 if fm( 3

4 ) ∈ Ji,j ,
τ∗
1/2i+1 if fm( 3

4 ) ∈ J∗
i,j .

Any interval Ii ∪ I∗i contains 2i+1 intervals Ji,j and 2i+1 intervals J∗
i,j , which

regularly change. Any interval Ji,j and any J∗
i,j contains 2i images of 1 and 2i

images of 3
4 both under f . Take z1 = (1, 0), and z2 = (3

4 , 0). By this construction,
the trajectory of the second coordinate of z1 is equal to{

0,
1
4
,
1
2
,
1
4
, 0,

1
16

, · · · ,
7
16

,
1
2
,

7
16

, · · · ,
1
16

, 0,
1
64

, · · · ,
31
64

,
1
2
,
31
64

· · · ,
1
64

, 0 · · ·
}

while the trajectory of the second coordinate of z2 is{
0,

1
2
, 0,

1
2
, 0,

1
4
,
1
2
,
1
4
, 0,

1
4
,
1
2
,
1
4
, 0,

1
4
,
1
2
,
1
4
, 0,

1
4
,
1
2
,
1
4
, 0,

1
8
,
1
4
,
3
8
,
1
2
,
3
8
· · ·

}
.

We get

ωF×F (z1, z2) =
(
{0} ×

[
0,

1
2

])
×

(
{0} ×

[
0,

1
2

])
.(16)

It is easy to see that

ωF (z1) × ωF (z2) =
(
{0} ×

[
0,

1
2

])
×

(
{0} ×

[
0,

1
2

])
.(17)

hence by (16) and (17)

ωF (z1) × ωF (z2) = ωF×F (z1, z2).

�

Lemma 4.9. P4 �⇒ P8: There is F ∈ T such that any ω-limit set either is
a cycle or contains no cycle and there are two points whose trajectories are not
correlated.

Proof. There is an F ∈ T possessing all periods and no infinite ω-limit set
containing periodic points [7]. If z1, z2 ∈ Per(F ) with periods 2 and 3, then
ωF (z1) × ωF (z2) = ωF×F (z1, z2). �

Proposition 4.10. (See, e.g., [11].) Let ϕ ∈ C(X), ξ ∈ X. If ωϕ(ξ) is
countable, then ωϕ(ξ) contains a cycle.

Lemma 4.11. P4 ⇒ P7: Let F ∈ T . If any ω-limit set of F is a cycle,or
contains no cycle, then there is no countably infinite ω-limit set.

Proof. Assume any ωF (z) either is a cycle or contains no cycle. Let z ∈ I2 such
that ωF (z) is countable. Then, by Proposition 4.10, ωF (z) contains a cycle. By
the hypothesis, ωF (z) is a cycle, hence, a finite set. �

Lemma 4.12. P3 ⇒ P7: If F ∈ T , and the period of any cycle of F is a
power of two then F has no countably infinite ω-limit set.
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Proof. Assume the period of any cycle of F is a power of two, and let ωF (x, y)
be countable. Since π1(ωF (x, y)) = ωf (x), and since the period of any cycle of f
is a power of two, Proposition 2.1 implies that f has no countably infinite ω-limit
set. Thus, π1(ωF (x, y)) is a cycle of period m ∈ N. Then π1(ωF m(x, y)) = {x̄},
for some x̄ ∈ Fix(fm), ωF m(x, y) ⊂ Ix̄ and, by Lemma 4.1,

ωF m(x, y) ⊂ CR(Fm|Ix̄).

By Proposition 2.1, h(Fm|Ix̄) = 0, since otherwise F would have a cycle of period
distinct from 2n, for any n ∈ N0. By Lemma 4.2,

ωF m(x, y) ⊂ Per(Fm|Ix̄),

since any point in a solenoid S has an uncountable minimal ω-limit set (cf., e.g.,
[3]) but ωF m(x, y) is countable. Then ωF m(x, y) contains an isolated periodic
point, but this is possible only when ωF m(x, y) is a cycle. Thus, ωF m(x, y) and
hence, ωF (x, y) is a finite set. �

Lemma 4.13. P6 �⇒ P7: There is an F ∈ T with an infinite countable ω-limit
set and no homoclinic trajectory.

Proof. Let T be the tent map i.e., T (x) = 2x if x ∈ [0, 1
2 ], and T (x) = 2 − 2x

otherwise, and let

F (x, y) =
(

T (x),
1
3
y + τ(x)

)
, where τ(x) ∈

[
0,

1
2

]
and τ(0) = 0.

It is possible to specify τ(x) such that F has no homoclinic trajectory, see [8].
Consider this τ(x).

It is well known that there is a point x̄ ∈ I, such that ωT (x̄) = { 1
2j−1 ; j ∈ N}∪{0}

is a homoclinic trajectory of T . We prove that, for any y ∈ I, ωF (x̄, y) is countable.
First we show that

ωF (x̄, y) ∩ I1 is a singleton.(18)

For any i, j ∈ N, let J i
j be the compact left-hand neighborhood of the point 1

2j−1

such that |J i
1| = 1

2i and T (J i
j+1) = J i

j . It follows that, for any i ∈ N, the trajectory
of x̄ is eventually in the union of intervals J i

j = [ 1
2j−1 − 1

2i+j−1 , 1
2j−1 ], j ∈ N. Denote

by Ri
1 the smallest rectangle which contains F (J i

2 × I), i.e.,

Ri
1 = J i

1 ×
[
min{τ(x);x ∈ J i

2},
1
3

+ max{τ(x);x ∈ J i
2}

]
.

Obviously, ωF (x̄, y)∩I1 ⊂ Ri
1 ⊂ J i

1×I. Since J i
3 is the preimage of J i

2, F 2(J i
3×I) ⊂

F (J i
2 × I) ⊂ Ri

1. Let Ri
2 be the smallest rectangle which contains F 2(J i

3 × I), i.e.,

Ri
2 = J i

1 ×
[
min
x∈Ji

3

{
1
3
τ(x) + τ(T (x))

}
,
1
9

+ max
x∈Ji

3

{
1
3
τ(x) + τ(T (x))

}]
.



250 V. KORNECKÁ

Then ωF (x̄, y) ∩ I1 ⊂ Ri
2 ⊂ Ri

1. By induction we obtain rectangles Ri
1 ⊃ Ri

2 ⊃
· · · ⊃ Ri

j ⊃ · · · , where

Ri
j = J i

1 ×
[

min
x∈Ji

j+1

{ j∑
k=1

1
3j−k

τ(T k−1(x))
}

,
1
3j

+ max
x∈Ji

j+1

{ j∑
k=1

1
3j−k

τ(T k−1(x))
}]

,

and ωF (x̄, y) ∩ I1 ⊂ Ri
j , for any j ∈ N. Since this is true for any i ∈ N, and since

Ri+1
j ⊂ Ri

j ,

ωF (x̄, y) ∩ I1 ⊂
∞⋂

i=1

Ri
j =: R̃j , for any j ∈ N,(19)

where

R̃j = {1} ×
[ j∑

k=1

1
3j−k

τ(T k−1(
1
2j

)),
1
3j

+
j∑

k=1

1
3j−k

τ(T k−1(
1
2j

))
]
.(20)

To see (20) note that 1
2j is the right-hand endpoint of J i

j+1, for any i ∈ N. Since
R̃j is a vertical interval with length 1

3j , and since R̃j ⊃ R̃j+1, (18) follows by (19),
whereas

ωF (x̄, y) ∩ I1 = {1} ×
{ ∞∑

k=1

1
3k−1

τ

(
1
2k

)}
,

which is a singleton.
Since 1

2j is the j-th preimage of 1, ωF (x̄, y)∩ I2−j is a singleton, for any j ∈ N.
To finish the argument it suffices to show that ωF (x̄, y)∩I0 is countable. Denote by
R̄i

j the smallest rectangle containing F (Ri
j). Then, for any i, j ∈ N, the trajectory

of R̄i
j unified with the set of its cluster points contains ωF (x̄, y) ∩ I0. It follows

that

ωF (x̄, y) ∩ I0 =
∞⋂

j=1

∞⋂
i=1

∞⋃
n=0

Fn(R̄i
j) ∪ ωF

( ∞⋂
j=1

∞⋂
i=1

∞⋃
n=0

Fn(R̄i
j)

)

=
{(

0,
1

3m

∞∑
k=1

1
3k−1

τ

(
1

2k−1

))
;m ∈ N0

}
∪ {(0, 0)},

which is countable set. Hence ωF (x̄, y) is a countable set as a countable union of
countable sets. �

Lemma 4.14. P6 ⇒ P9: Let F ∈ T . If F has no homoclinic trajectory then,
for any closed invariant set A and any m ∈ N, the map Fm|A is not topologically
almost conjugate to the shift.

Proof. Assume Fm|A is topologically almost conjugate to the shift σ in Σ. So,
there is a continuous surjective map ψ : A → Σ, such that ψ ◦ Fm|A = σ ◦ ψ
and any point in Σ is the image of at most two points from A. Take a point
z = 0∞ ∈ Σ. Consider the sequence {zi}∞i=1 ⊂ Σ of preimages of z, such that

z1 = z, z2 = 10∞ and zn = 0n−210∞, for n > 2.
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Clearly limi→∞ zi = z and the sequence {zi}∞i=1 forms a homoclinic trajectory of σ
related to the fixed point z. Since ψ is continuous and surjective, there exist points
z, zi ∈ A ⊂ I2, such that ψ(z) = z, ψ(zi) = zi, for any i ∈ N. Then z is a periodic
point of F with the period m, zi = Fm(zi+1) and limi→∞ zi = z. Hence the
sequence {zi}∞i=1 form a homoclinic trajectory of Fm related to z. Consequently
there exist a homoclinic trajectory of F related to the cycle generated by z. �

Lemma 4.15. P7 ⇒ P9: Let F ∈ T . If there is no infinite countable ω-limit
set then Fm|A is topologically almost conjugate to the shift, for no closed invariant
set A and m ∈ N.

Proof. Assume Fm|A is topologically almost conjugate to σ. Let ψ be the
corresponding continuous surjective map A → Σ, and z = 010011 . . . 0n1n . . . ∈ Σ.
It is easy to see, that

ωσ(z) = {0∞, 10∞, 110∞, 1110∞, . . . , 1∞, 01∞, 001∞, 0001∞, . . .}.

Since ωσ(z) is countably infinite, ψ(z) = z for some z ∈ I2, and since any point in
Σ has at most two preimages in A, ωF (z) is countably infinite, too. �

Lemma 4.16. P5 �⇒ P9: There is an F ∈ T such that

i. if ωF (z) = ωF 2(z), then ωF (z) is a fixed point;
ii. there is a closed invariant set A ⊂ I2 and m > 0, such that Fm|A is

topologically almost conjugate to the shift.

Proof. Let f(x) = 1 − x for x ∈ I, and

gx(y) =
{

T (y) for x ∈ [0, 1
4 ],

y for x ∈ [ 12 , 1],

where T is the tent map. Extend gx linearly onto I, and take F ∈ T such that
(x, y) �→ (f(x), gx(y)).

If ωF (z) = ωF 2(z) then, for x = π1(z), ωf (x) = ωf2(x) and, by definition of f ,
x = 1

2 . Since g 1
2

is the identity, ωF ( 1
2 , y) = ωF 2( 1

2 , y) and ωF ( 1
2 , y) is a fixed point,

for any y ∈ I. Thus F satisfies (i).
Take 2-cycle {0, 1} of the base. Since g1 is the identity and g0 is the tent map

which has cycles of all periods F 2|I0 has a cycle of period other then a power of
two. Then, by Proposition 2.1, there is a closed invariant set A and m > 0 such
that (F 2|I0)m|A is topologically almost conjugate to the shift in Σ. Thus F 2m|A
is topologically almost conjugate to the shift and (ii) follows. �

5. Proof of the main Theorem

Proof of Theorem 3.1 follows by Proposition 3.2 and Lemmas 4.4 – 4.5, 4.7 – 4.9
and 4.11 – 4.16. The next table summarizes all results.
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1 2 3 4 5 6 7 8 9
1 • �⇒ ⇒ �⇒ �⇒ ⇒ ⇒ �⇒ ⇒
2 �⇒ • ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒
3 �⇒ �⇒ • �⇒ �⇒ ⇒ ⇒ �⇒ ⇒
4 �⇒ �⇒ �⇒ • �⇒ �⇒ ⇒ �⇒ ⇒
5 �⇒ �⇒ �⇒ �⇒ • �⇒ �⇒ ⇒ �⇒
6 �⇒ �⇒ �⇒ �⇒ �⇒ • �⇒ �⇒ ⇒
7 �⇒ �⇒ �⇒ �⇒ �⇒ �⇒ • �⇒ ⇒
8 �⇒ �⇒ �⇒ �⇒ �⇒ �⇒ �⇒ • �⇒
9 �⇒ �⇒ �⇒ �⇒ �⇒ �⇒ �⇒ �⇒ •
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