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ON A NONLINEAR INTEGRAL EQUATION
WITHOUT COMPACTNESS

F. ISAIA

ABSTRACT. The purpose of this paper is to obtain an existence result for the integral
equation

b
u(t):gp(t,u(t))—i—/ P (t,s,u(s))ds, tE€ [a,b

where ¢ : [a,b] XR — R and ¥ : [a, b] X [a, b] xR — R are continuous functions which
satisfy some special growth conditions. The main idea is to transform the integral
equation into a fixed point problem for a condensing map T : C[a,b] — C [a,b].
The “a priori estimate method” (which is a consequence of the invariance under
homotopy of the degree defined for a-condensing perturbations of the identity) is
used in order to prove the existence of fixed points for 7. Note that the assump-
tions on functions ¢ and v do not generally assure the compactness of operator 7',
therefore the Leray-Schauder degree cannot be used (see K. Deimling [2, Example
9.1, p. 69]).

1. INTRODUCTION

The topological methods proved to be a powerful tool in the study of various
problems which appear in nonlinear analysis. Particularly, the a priori estimate
method (or the method of a priori bounds) has been often used in order to prove
the existence of solutions for some boundary value problems for nonlinear differen-
tial equations or nonlinear partial differential equations. For example, J. Mawhin
uses this method together with the coincidence degree and shows that under ap-
propriate assumptions, the boundary value problem

2" ()= f(tz(t),2 (t), te]lo,n]
x(0)=z(m)=0
and the problem
()= f(tx(), tel0,]1]
z(0) =z (1)
admit solutions (see J. Mawhin [6, Sections V.2 and VI.2]). This method is also
used (but together with the Leray-Schauder degree) in G. Dinca, P. Jebelean [3]
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and G. Dinca, P. Jebelean, J. Mawhin [4] to prove the existence of solutions for
the problem

-Apu = f(t,u) inQ
u ‘39 =0.

In the present paper, the a priori estimate method is used together with the
degree for condensing maps in order to prove the existence of solutions for the
integral equation

b
(1) u(t) =@ (tu(t)+ / Y (t,s,u(s))ds, tE€lab],

under appropriate assumptions on functions ¢ and . The result presented herein

is in relation with a result of F. Isaia [5]. The hypothesis imposed on functions ¢
and v are stronger (and considerably simpler), but the result is stronger as well,
namely the solution u of equation (1) is in C [a, b], while in F. Isaia [5], we obtained
u € LP (a,b).

2. THE TOPOLOGICAL DEGREE FOR CONDENSING MAPS

For a minute description of the following notions we refer the reader to K. Deimling
[2].

In the following, X will be a Banach space and B C P (X) will be the family
of all its bounded sets.

Definition 1. The function o : B — R defined by
a(B) =inf {d > 0 : B admits a finite cover by sets of diameter < d}, B € B,
is called the (Kuratowski-) measure of noncompactness.

In the whole paper, the letter o will only be used in this context. We state
without proof some properties of this measure.

Proposition 1. The following assertions hold:

(a) a(B) =0 iff B is relatively compact.
(b) « is a seminorm, i.e.

a(AB) =|Ma(B) and «o(By+ Bs) <a(B1)+ a(Bs).
(¢c) By C By implies a(By) < a(Bs);
a (B UBsy) =max{a(B1),a(B2)}.

(d) a(convB) = a(B).
(e) a(B) =a(B).

Definition 2. Consider 2 C X and F' : Q — X a continuous bounded map.
We say that F' is a-Lipschitz if there exists k£ > 0 such that

a(F(B)) <ka(B) (V)B C bounded.
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If, in addition, k < 1, then we say that F is a strict a-contraction. We say that F’
is a-condensing if

a(F(B)) <a(B) (V)B CQbounded with a (B) > 0.
In other words, o (F (B)) > «(B) implies a(B) = 0. The class of all strict

a-contractions F' : Q — X is denoted by SC, (2) and the class of all a-condensing
maps F : Q — X is denoted by C, (Q).

We remark that SC, () C Cy () and every F' € C,, () is a-Lipschitz with
constant £ = 1. We also recall that F' : 0 — X is Lipschitz if there exists k > 0
such that

|[Fz— Fyl| <kllz—yl| (V)z,y€Q
and that F is a strict contraction if & < 1.
Next, we state without proof some properties of the applications defined above.

Proposition 2. If ;G : Q — X are «-Lipschitz maps with constants k,
respectively k', then F + G : Q — X is a-Lipschitz with constant k + k'.

Proposition 3. If F': Q — X is compact, then F is a-Lipschitz with constant
k=0.

Proposition 4. If ' : Q0 — X 1is Lipschitz with constant k, then F is «-
Lipschitz with the same constant k.

The theorem below asserts the existence and the basic properties of the topo-
logical degree for a-condensing perturbations of the identity.
Let

T (I-FQy: QCcX open and bounded,
- FeCy(Q),ye X\(I-F)(09)
be the family of the admissible triplets. There exists one degree function D : 7 — Z
which satisfies the properties:

Theorem 1. (D1) D(I,Q,y) =1 for every y € Q (Normalization,).
(D2) For every disjoint, open sets Q0,02 C Q and everyy ¢ (I—F)(Q\(Q1UQ2))
we have

D(I_Fugvy):D(I_Fvﬂlay)+D(I_F7927y)

(Additivity on domain).
(D3) D(I-H(t,-),Q,y(t)) is independent of t € [0,1] for every continuous,
bounded map H : [0,1] x Q — X which satisfies

a(H([0,1] x B)) < a(B) (V)B C Q with a(B) >0
and every continuous function y : [0,1] — X which satisfies
y(t) #x—H(t,x) (V)tel0,1],(V)redQ

(Invariance under homotopy).
(D4) D(I —F,Q,y) # 0 impliesy € (I — F) () (Existence).
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(D5) D(I—-F,Q,y) = D(I—F,Q,y) for every open set Q1 C Q and every
y& (I—F)(Q\Q) (BEzcision).

Having in hand a degree function defined on 7, we study the usability of the
“a priori estimate method” by means of this degree.

Theorem 2. Let F': X — X be a-condensing and
S={zxeX:(I)Ae€0,1] such that x = A\Fz}.
If S is a bounded set in X, so there exists v > 0 such that S C B, (0), then
D(I-)XF,B,(0),00=1 (¥)Ae[0,1].

Consequently, F has at least one fized point and the set of the fized points of F
lies in By (0).

Proof. First, we remark that every affine homotopy of a-condensing maps is an
admissible homotopy. To see this, let us consider a bounded open set 2 C X, the

maps Fi, F» € C, () and let H : [0,1] x © — X be defined by
H(t,x) = (1 —1t) Fix + tFhe.
For every B C Q with o (B) > 0 we have
H ([0,1] x B) C conv (Fy (B) U F» (B))
and, using Proposition 1,

a(H ([0,1] x B)) < af(conv (Fy (B)UF5(B)))
o (F1 (B)U Fy(B))
= max{a(F; (B)),a(Fs(B))} <a(B).

Next, we fix A € [0,1] and we consider the affine homotopy between the -
condensing maps AF,0 € C, (X)

H:[0,1]xX — X, H(z)=(1—-1t)0z+t\Fz=t\Fux.
By the previous argument,
a(H([0,1] x B)) < a(B) (V)B C X bounded with « (B) > 0.

If x € X and t € [0,1] verify x — H (t,x) = 0, then x € S C B, (0). Thus, we
can use the properties (D3), (D1) of the degree and we obtain
D(I-AF,B,(0),0) = D(I-H(1,),B,(0),0
= D( 0,7), (0),0)
D(I,B, (0),0) = 1.

I-H s ")
I—H(O,-

B,
B,

Finally, the property (D4) of the degree is used. O
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3. THE EXISTENCE RESULT

Consider equation (1)

b
u(t):gp(t,u(t))+/ Y (t,s,u(s))ds, te€la,bl,

where ¢ : [a,b] x R — R and ¥ : [a,b] x [a,b] x R — R are continuous functions
which satisfy the following conditions:

(a) There exist Cy,M; >0, g1 € [0,1) such that
lo (t,z)| < Oy |z]™ + My

for every (t,z) € [a,b] x R.
(b) There exists K7 € [0,1) such that

lo (t,z) — @ (t,y)] < Ky |z —y]

for every (t,z),(t,y) € [a,b] x R.
(c) There exist Co, My > 0, g2 € [0,1) such that

¥ (t,5,2)] < Cafa|™ + My
for every (t,s,z) € [a,b] X [a,b] x R.
Under these assumptions, we will show that equation (1) has at least one solu-

tion u € C'[a, b].
Define operators

Fo Clab] = Clab], (Fu)(t) = ¢ (tu(t), t €la,b],
b
G : Cla,b]— Cla,b, (Gu)(t)= / P (t,s,u(s))ds, t €la,b],
T : Cla,b — Cla,b], Tu=Fu+ Gu.
Then, equation (1) can be written as
(2) u="Tu.

Thus, the existence of a solution for equation (1) is equivalent to the existence of
a fixed point for operator T'.

Proposition 5. The operator F : C'|a,b] — C'[a,b] is Lipschitz with constant
K;. Consequently F is a-Lipschitz with the same constant K.

Proof. From (b), we have

[Fu—Follg,, = sup [(Fu)(t) — (Fv) (t)]
t€la,b]
= sup [p(tu(t) —e(tv ()
t€la,b]
< Ky osup fu(t) —v (@) =Ky llu =g
t€la,b]

for every u,v € C'[a,b]. By Proposition 4, F is a-Lipschitz with constant K.
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Moreover, F' satisfies the following growth condition:
(3) HF“HC(II;] <G ||UHCab]+M17
for every u € C'[a,b]. Relation (3) is a simple consequence of condition (a). O

Proposition 6. The operator G : C [a,b] — C'la,b] is compact. Consequently
G is a-Lipschitz with zero constant.

Proof. First, we prove the continuity of G. Let (u,) C Cla,b], u € C[a,b] be
such that [|un, — ullg, ) — 0. We have to show that |Gu, — Gul|¢(, ;) — 0. Fix
e > 0. There exists a constant K > 0 such that
K (V)neN",

K.

||UnHC[a,b] <
<

||UHc[a,b]
Using the uniform continuity of ¢ on [a,b] x [a,b] x [- K, K], we derive that there
exists 6 = d (¢) > 0 such that
€

|¢ (tlaslaxl) _,(/)(t2782a$2)| S h— a7

for every (t1,s1,21), (t2,82,22) € [a,b] X [a,b] x [-K, K] such that [t; —ta] +
|s1— s2| + |21 — @2 < 4. From |lun —ullgp, ) — O, it follows that there exists
N = N () € N* such that

sup |un (t) —u (t)] <4,

t€la,b]
/¢tsun ds—/wtsu

sup/|1/Jtsun ) — (L, s,u(s))]ds <e,

t€la,b

for every n > N. Consequently,

Gun, — G“||C[a,b] = Sup
t€la,b]

IN

for every n > N. The continuity of G is proved.
Moreover, G satisfies the following growth condition:

(4) |Gull gy < Co (b—a) a2 4 + (b — a) Mo,

for every u € C'[a,b]. Relation (4) is a simple consequence of condition (c).

In order to prove the compactness of G, we consider a bounded set M C C'[a, ]
and we will show that G (M) is relatively compact in C[a,b] with the help of
Arzela-Ascoli theorem. Let K > 0 be such that

”uHC[a,b] < F7
for every u € M. By (4), we have

1Gull gy < (b a) [C2E™ + Mg] :



ON A NONLINEAR INTEGRAL EQUATION WITHOUT COMPACTNESS 239

for every u € M, so G (M) is bounded in C'[a,b]. Fix € > 0. Using the uniform
continuity of ¢ on [a,b] x [a,b] x [~ K, K|, we derive that there exists § =6 (¢) > 0
such that

Y (t1,51,21) — 9 (t2, s2,72)| <

b—a’
for every (t1,s1,21), (to, s2,22) € [a,b] x [ K K] such that [t; — o] +
|s1 — sa| + |x1 — 2| < 4. If t1,t2 € [a, b satlsfy [t1 — t2| < 6, then

[(Gu) (t1) = (Gu) (t2)] S/ 9 (t1,8,u(s)) = (B2, 5,u(s))| ds <,

for every uw € M. The set G (M) C C'[a, b] satisfies the hypothesis of Arzela-Ascoli
theorem, so G (M) is relatively compact in C'[a, b].
By Proposition 3, G is a-Lipschitz with zero constant. O

Now, we have the possibility to prove the main result of this paper.

Theorem 3. If the functions ¢ : [a,b] X R - R and ¥ : [a,b] X [a,b)] x R - R
satisfy the conditions (a), (b),(c), then the integral equation

b
u (t) :<ﬂ(t7U(t))+/ Ot s, u(s)ds, telab],

has at least one solution u € C'[a,b] and the set of the solutions of equation (1) is
bounded in C [a,b].

Proof. Let F,G,T : C[a,b] — C [a,b] be the operators defined in the beginning
of this section. They are continuous and bounded. Moreover, F' is a-Lipschitz with
constant K7 € [0,1) and G is a-Lipschitz with zero constant (see Propositions 5
and 6). Proposition 2 shows us that T is a strict a-contraction with constant K.

Set

S={uecCla,b]:(3) A€ [0,1] such that v = AT'u}.
Next, we prove that S is bounded in C'[a,b]. Consider u € S and A € [0, 1] such
that u = AT'u. Tt follows from (3) and (4) that

||“Hca,b = )‘”TuHCa,b <A HFuHca,b +||GU||Ca,b
[a,b] [ab] [a,b] [ab]

MGl + Co (b — a) [Jull? [ab]+M1—|—(b—a)M2}.

IN

This inequality, together with ¢; < 1, g2 < 1, shows us that S is bounded in
C'la,b).

Consequently, by Theorem 2 we deduce that T has at least one fixed point and
the set of the fixed points of T is bounded in C [a, b]. O

Remark 1.

(i) if the growth condition (a) is formulated for ¢; = 1, then the conclusions of
Theorem 3 remain valid provided that C; < 1;

(ii) if the growth condition (c) is formulated for go = 1, then the conclusions of
Theorem 3 remain valid provided that (b —a) Cy < 1;
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(iii) if the growth conditions (a) and (c) are formulated for ¢; = 1 and ¢ = 1,
then the conclusions of Theorem 3 remain valid provided that

01+(b—a)02<1.

Remark 2. The conclusions of Theorem 3 remain valid provided that equation
(1) is replaced by

t
ut) = (tu(®)+ [ vitsul)ds el
Only slight modifications in the proof of Proposition 6 are needed.
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