ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. LXXIV, 2 (2005)
p. 185 - 198

Sharp upper bounds on the spectral radius of the Laplacian matrix of graphs
K. Ch. Das


Abstract.  Let G = (V,E) be a simple connected graph with n vertices and e edges. Assume that the vertices are ordered such that d1 > d2 > ... > dn, where di is the degree of vi for i = 1,2,...,n and the average of the degrees of the vertices adjacent to vi is denoted by mi. Let mmax be the maximum of mi’s for i = 1,2,...,n. Also, let r (G) denote the largest eigenvalue of the adjacency matrix and l (G) denote the largest eigenvalue of the Laplacian matrix of a graph G. In this paper, we present a sharp upper bound on r (G):

        V~ --------------------------
r(G) <   2e- (n- 1)dn + (dn- 1)mmax,
with equality if and only if G is a star graph or G is a regular graph.

In addition, we give two upper bounds for l(G):

                V~ s um ----------(-  sum -------)------------------------
         { 2 +     ni=1di(di-1)-  12  ni=1di-1 (2dn- 2)+(2dn- 3)(2d1- 2),
1.c(G) <                                            if dn > 2,
                V~ s um n-----------------
            2+     i=1 di(di- 1)- d1 + 1, if dn = 1,

where the equality holds if and only if G is a regular bipartite graph or G is a star graph, respectively.

2. l(G) <       V~ -----[2e----n-2------------(----d--)]------
d1 +  d21 + 4 n-1 + n-1d1 + (d1- dn) 1 - n1-1 mmax
-----------------------2-------------------------,


with equality if and only if G is a regular bipartite graph.


Keywords:   Graph, adjacency matrix, Laplacian matrix, spectral radius, upper bound.

AMS Subject classification:  05C50.

Download:     Adobe PDF     Compressed Postscript      

Version to read:     Adobe PDF

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295755 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2005, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE