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α-FUZZY FIXED POINTS FOR α-FUZZY MONOTONE MULTIFUNCTIONS

A. STOUTI

Abstract. In this note, we prove the existence of maximal, minimal, greatest and least α-fuzzy fixed points for α-fuzzy

monotone multifunctions.

1. Introduction

Let X be a nonempty set. A fuzzy subset A of X is a function of X into [0, 1] (see [14]). A fuzzy multifunction
is a map T : X → [0, 1]X such that for every x ∈ X, T (x) is a nonempty fuzzy set. Let α ∈]0, 1] and let
T : X → [0, 1]X be a fuzzy multifunction. We say that an element x of X is an α-fuzzy fixed point of T if
T (x)(x) = α. When α = 1, the element x is called a fixed point of T.

During the last few decades several authors established fixed points theorems in fuzzy setting, see for example
[1] – [12]. Recently, in [9], we introduced the notion of α-fuzzy ordered sets in which we established some fixed
points theorems for fuzzy monotone multifunctions.

The aim of this note is to study the existence of α-fuzzy fixed points for α-fuzzy monotone multifunctions.
First, we prove the existence of maximal and minimal α-fuzzy fixed points (see Theorems 3.1 and 3.3). Second,
we establish the existence of greatest and least α-fuzzy fixed points (see Theorems 4.1 and 4.2).

2. Preliminaries

First, we recall the definition of α-fuzzy order.
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Definition 2.1. [9] Let X be a nonempty set and α ∈ ]0, 1]. An α-fuzzy order on X is a fuzzy subset rα of
X ×X satisfying the following three properties:

(i) for all x ∈ X, rα(x, x) = α, (α-fuzzy reflexivity);
(ii) for all x, y ∈ X, rα(x, y) + rα(y, x) > α implies x = y. (α-fuzzy antisymmetry);
(iii) for all x, z ∈ X, rα(x, z) ≥ supy∈X [min{rα(x, y), rα(y, z)}] (α-fuzzy transitivity).

The pair (X, rα), where rα is a α-fuzzy order on X is called a rα-fuzzy ordered set. An α-fuzzy order rα is
said to be total if for all x 6= y we have either rα(x, y) > α

2 or rα(y, x) > α
2 . A rα-fuzzy ordered set X on which

the order rα is total is called rα-fuzzy chain.

Let (X, rα) be a nonempty rα-fuzzy ordered set and A be a subset of X.
An element u of X is said to be a rα-upper bound of A if rα(x, u) > α

2 for all x ∈ A.
If x is a rα-upper bound of A and x ∈ A, then it is called a greatest element of A.
An element m of A is called a maximal element of A if there is x ∈ A such that rα(m,x) > α

2 , then x = m.
An element l of X is said to be a rα-lower bound of A if rα(l, x) > α

2 for all x ∈ A.
If l is a rα-lower bound of A and l ∈ A, then it is called the least element of A.
An element n of A is called a minimal element of A if there is x ∈ A such that rα(x, n) > α

2 , then x = n. As
usual,

suprα
(A) := the least element of rα-upper bounds of A (if it exists),

infrα
(A) := the greatest element of rα-lower bounds of A (if it exists),

maxrα(A) := the greatest element of A (if it exists),
minrα(A) := the least element of A (if it exists).

Next, we shall give four examples of α-fuzzy orders.
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Examples.
1. Let X = {0, 1, 2} and rα be the α-fuzzy order relation defined on X by:

rα(0, 0) = rα(1, 1) = rα(2, 2) = α,{
rα(0, 2) = 0.55α
rα(2, 0) = 0.1α

{
rα(2, 1) = 0.2α
rα(1, 2) = 0.6α

{
rα(1, 0) = 0.7α
rα(0, 1) = 0.15α.

As properties of rα, we have infrα
(X) = 0 and suprα

(X) = 2.

2. Consider the α-fuzzy order relation rα defined on X = {0, 1, 2} by:

rα(0, 0) = rα(1, 1) = rα(2, 2) = α,{
rα(0, 2) = 0.6α
rα(2, 0) = 0.2α

{
rα(2, 1) = 0.2α
rα(1, 2) = 0.3α

{
rα(1, 0) = 0.3α
rα(0, 1) = 0.55α.

In this case, we have infrα
(X) = 0 and suprα

(X) do not exist in X. Note that
1 and 2 are two maximal elements in (X, rα).

3. Let rα be the α-fuzzy order defined on X = {0, 1, 2} by:

rα(0, 0) = rα(1, 1) = rα(2, 2) = α,{
rα(0, 2) = 0.65α
rα(2, 0) = 0.15α

{
rα(2, 1) = 0.1α
rα(1, 2) = 0.7α

{
rα(1, 0) = 0.15α
rα(0, 1) = 0.10α.

Then, suprα
(X) = 2 and infrα

(X) do not exist in X. In addition, 1 and 0 are
two minimal elements in (X, rα).

4. Let rα be the α-fuzzy order defined on X = {0, 1, 2} by:

rα(0, 0) = rα(1, 1) = rα(2, 2) = α,
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{
rα(0, 2) = 0.8α
rα(2, 0) = 0.15α

{
rα(2, 1) = 0.20α
rα(1, 2) = 0.30α

{
rα(1, 0) = 0.30α
rα(0, 1) = 0.20α.

In this case, infrα(X) and suprα
(X) do not exist in X. Also, 1 is a maximal

and minimal element of (X, rα).
Next, we recall some definitions and results for subsequent use.

Definition 2.2. [9] Let (X, rα) be a nonempty rα-fuzzy ordered set. The inverse α-fuzzy relation sα of rα is
defined by sα(x, y) = rα(y, x), for all x, y ∈ X.

Let us not that by [9, Proposition 3.5], if rα is an α-fuzzy order, then sα is also an α-fuzzy order.
In [10], we proved the following lemma.

Lemma 2.3. Let (X, rα) be a rα-fuzzy order set and sα be the inverse fuzzy order relation of rα. Then,
(i) If a nonempty subset A of X has a rα-supremum, then A has a sα-infimum and infsα

(A) = suprα
(A).

(ii) If a nonempty subset A of X has a rα-infimum, then A has a sα-supremum and infrα
(A) = supsα

(A).

The following α-fuzzy Zorn’s Lemma is given in [9].

Lemma 2.4. Let (X, rα) be a nonempty α-fuzzy ordered sets. If every nonemty rα-fuzzy chain in X has a
rα-upper bound, then X has a maximal element.

Let T : X → [0, 1]X be a fuzzy multifunction. Then, for every x ∈ X, we define the following subset of X by
setting:

Tα
x = {y ∈ X : T (x)(y) = α} .

In this note, we shall use the following definition of α-fuzzy monotonicity.

Definition 2.5. Let (X, rα) be a nonempty rα-fuzzy ordered set. A fuzzy multifunction T : X → [0, 1]X is
said to be rα-fuzzy monotone if the two following properties are satisfied:

(i) for all x ∈ X, Tα
x 6= ∅;
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(ii) if rα(x, y) > α
2 and x 6= y, for x, y ∈ X, then for all a ∈ Tα

x and b ∈ Tα
y , we have rα(a, b) > α

2 .

We denote by Fα
T the set of all α-fuzzy fixed points of T .

3. Maximal and minimal α-fuzzy fixed points

In this section, we investigate the existence of maximal and minimal α-fuzzy fixed points of α-fuzzy monotone
multifunctions. First, we shall show the following:

Theorem 3.1. Let (X, rα) be an α-fuzzy ordered set with the property that every nonempty rα-fuzzy chain in
(X, rα) has a rα-supremum. Let T : X → [0, 1]X be a rα-fuzzy monotone multifunction. If there exist a, b ∈ X
such that T (a)(b) = α and rα(a, b) > α

2 , then the set Fα
T of all α-fuzzy fixed points of T is nonempty and has a

maximal element.

Proof. Let Hα be the fuzzy ordered subset of X defined by

Hα =
{

x ∈ X : there exists y ∈ X, T (x)(y) = α and rα(x, y) >
α

2

}
.

Since a ∈ Hα, then the subset Hα is nonempty.
Claim 1. The subset Hα has a maximal element. Indeed, if C is a nonempty rα-fuzzy chain in Hα and s =
suprα

(C), then we distinguish the following two cases.
First case: s ∈ C, then s ∈ Hα.
Second case: s 6∈ C. Then, for every c ∈ C, rα(c, s) > α

2 and c 6= s. By our definition Tα
s 6= ∅. Then, there exists

z ∈ X such that T (s)(z) = α. Since c ∈ Hα, there exists d ∈ X such that T (c)(d) = α and rα(c, d) > α
2 . As T is

rα-fuzzy monotone, we get rα(d, z) > α
2 . By α-fuzzy transitivity, we obtain rα(c, z) > α

2 . As c is a general element
of C, then z is a rα-upper bound of C. On the other hand, we know that s = suprα

(C). Hence, rα(s, z) > α
2 .

From this we deduce that s ∈ Hα. Therefore every nonemty rα-fuzzy chain in Hα has a rα-upper bound in Hα.
By Lemma 2.4, Hα has a maximal element, say m.
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Claim 2. The element m is a maximal α-fuzzy fixed point of T. Indeed, by Claim 1, m ∈ Hα. Hence, there exists
y ∈ X such that T (m)(y) = α and rα(m, y) > α

2 . On the other hand, by our hypothesis, Tα
y 6= ∅. Therefore, there

exists t ∈ X such that T (y)(t) = α. From rα-fuzzy monotonicity of T we get rα(y, t) > α
2 . So, y ∈ Hα. By Claim

1, m is a maximal element of Hα. From this and since T (m)(y) = α, rα(y, m) > α
2 and y ∈ Hα, we deduce that

we have y = m. So, T (m)(m) = α. Thus, m ∈ Fα
T . Now, let x ∈ Fα

T . Then, x ∈ Hα. So, Fα
T ⊆ Hα. As m ∈ Fα

T ,
then m is a maximal element of Fα

T . �

In order to establish the existence of a minimal α-fuzzy fixed, we shall need the following lemma:

Lemma 3.2. Let (X, rα) be a rα-fuzzy order set and sα be the inverse fuzzy relation of rα. Then, every rα-fuzzy
monotone multifunction is also sα-fuzzy monotone.

Proof. Let T : X → [0, 1]X be a rα-fuzzy monotone multifunction. Now, let x, y ∈ X such that x 6= y
and sα(x, y) > α

2 . Then, we have rα(y, x) > α
2 . Since T is rα-fuzzy monotone, then for all a, b ∈ X such that

T (x)(a) = α and T (y)(b) = α, we get rα(b, a) > α
2 . Therfore, we obtain sα(a, b) > α

2 . �

By using Lemmas 2.3 and 3.2 and Theorem 3.1, we obtain the following result.

Theorem 3.3. Let (X, rα) be a rα-fuzzy ordered set with the property that every nonempty rα-fuzzy chain
has a rα-infimum. Let T : X → [0, 1]X be a rα-fuzzy monotone multifunction. Assume that there exist a, b ∈ X
such that T (a)(b) = α and rα(b, a) > α

2 . Then, the set Fα
T of all α-fuzzy fixed points of T is nonempty and has a

minimal element.

Proof. Let sα be the inverse fuzzy order relation of rα. From Lemma 2.3, every nonempty sα-fuzzy chain has
a sα-supremum. On the other hand, by Lemma 3.2, we know that T is sα-fuzzy monotone. From this and
sα(a, b) > α

2 , by Theorem 3.1, we deduce that T has a maximal α-fuzzy fixed point, l say, in (X, sα). Let x ∈ Fα
T

such that rα(x, l) > α
2 . Then, sα(l, x) > α

2 . Since l is a maximal α-fuzzy fixed point of T in (X, sα), then l = x.
Therefore, l is a minimal α-fuzzy fixed point of T in (X, rα). �
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4. Greatest and least α-fuzzy fixed points

In this section, we shall establish the existence of the greatest and the least α-fuzzy for α-fuzzy monotone
multifunctions. First, we shall prove the following:

Theorem 4.1. Let (X, rα) be a rα-fuzzy ordered set with the property that every nonempty fuzzy ordered subset
of X has a rα-supremum. Let T : X → [0, 1]X be a rα-fuzzy monotone multifunction. If there exist a, b ∈ X such
that T (a)(b) = α and rα(a, b) > α

2 , then T has the greatest α-fuzzy fixed point. Moreover, we have

max(Fα
T ) = sup

rα

{
x ∈ X : there exists y ∈ X, T (x)(y) = α and rα(x, y) >

α

2

}
.

Proof. Let Pα be the fuzzy ordered subset defined by

Pα =
{

x ∈ X : there exists y ∈ X, T (x)(y) = α and rα(x, y) >
α

2

}
.

As a ∈ Pα, then the subset Pα is nonempty. Let g = suprα
(Pα).

Claim 1. We have: g ∈ Pα. Indeed, assume on the contrary that g 6∈ Pα. Then for all x ∈ Pα, we have x 6= g. As by
our definition Tα

g 6= ∅, then there exists z ∈ Tα
g . Let x ∈ Pα. Hence, there exists y ∈ Tα

x such that rα(x, y) > α
2 .

From α-fuzzy monotonicity of T, we obtain rα(y, z) > α
2 . By α-fuzzy transitivity, we get rα(x, z) > α

2 . As x
is a general element of Pα, so z is a rα-upper bound of Pα. On the other hand; by our hypothesis; we have
g = suprα

(Pα). Then, rα(g, z) > α
2 . Thus, g ∈ Pα. That is a contradiction, and our claim is proved.

Claim 2. We have:
{
z ∈ X : T (g)(z) = α and rα(g, z) > α

2

}
= {g}. By absurd, suppose that there exists z ∈ Tα

g

such that rα(g, z) > α
2 and z 6= g. As T is rα-fuzzy monotone and Tα

z 6= ∅, then there exists l ∈ Tα
z such that

rα(z, l) > α
2 . Therefore, z ∈ P and rα(z, g) > α

2 . Hence, we get rα(z, g) + rα(g, z) > α. From this and α-fuzzy
antisymmetry, we obtain g = z. That is a contradiction with the fact that z 6= g and our Claim is proved.
Claim 3. The element g is the greatest α-fuzzy fixed point of T. Indeed, as g ∈ Pα, then there exists z ∈ Tα

g

such that rα(g, z) > α
2 . Then by Claim 2, we deduce that z = g and g is a α-fuzzy fixed point of T. On the other



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

hand, let x be an α-fuzzy fixed point of T. So x ∈ Pα. Thus, Fα
T ⊆ Pα. Hence, g is a rα-upper bound of Fα

T . As
g ∈ Fα

T , therefore, g is the greatest element of Fα
T . �

Combining Lemmas 2.3 and 3.2 and Theorem 4.1, we get the following:

Theorem 4.2. Let (X, rα) be a rα-fuzzy ordered set with the property that every nonempty fuzzy ordered subset
of X has a rα-infimum. Let T : X → [0, 1]X be a rα-fuzzy monotone multifunction. Assume that there is a, b ∈ X
such that T (a)(b) = α and rα(b, a) > α

2 . Then, T has a least α-fuzzy fixed point. Furthermore, we have

min(Fα
T ) = inf

rα

{
x ∈ X : there exists y ∈ X, T (x)(y) = α and rα(y, x) >

α

2

}
.

Proof. Let sα be the inverse α-fuzzy order of rα. From Lemma 2.3, every nonempty fuzzy ordered subset of X
has an infimum in (X, sα). By Lemma 3.2, T is sα-fuzzy monotone. Since rα(b, a) > α

2 , then sα(a, b) > α
2 . From

this and by Theorem 4.1 we deduce that the fuzzy multifunction T has a greatest α-fuzzy fixed point in (X, sα),
m, say. Therefore, m is the least α-fuzzy fixed point of T in (X, rα). Since m is the greatest α-fuzzy fixed of T
in (X, sα), then by Theorem 4.1, we have

m = sup
sα

{
x ∈ X : there exists y ∈ X, T (x)(y) = α and sα(x, y) >

α

2

}
.

Therefore, by Lemma 2.3, we conclude that

m = inf
rα

{
x ∈ X : there exists y ∈ X, T (x)(y) = α and rα(y, x) >

α

2

}
.
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