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NOTE ON THE Ψ-BOUNDEDNESS OF THE SOLUTIONS
OF A SYSTEM OF DIFFERENTIAL EQUATIONS

A. DIAMANDESCU

Abstract. It is proved a necessary and sufficient condition for the existence of Ψ-bounded solutions of a linear nonho-

mogeneous system of ordinary differential equations.

1. Introduction

The purpose of this note is to give a necessary and sufficient condition so that the nonhomogeneous system

x′ = A(t)x + f(t)(1)

have at least one Ψ-bounded solution for every continuous and Ψ-bounded function f , in supplementary hypoth-
esis that A(t) is a Ψ-bounded matrix on R+.

Here, Ψ is a continuous matrix function. The introduction of the matrix function Ψ permits to obtain a mixed
asymptotic behavior of the components of the solutions.

The problem of Ψ-boundedness of the solutions for systems of ordinary differential equations has been studied
by many authors, as e.q. O. Akinyele [1], A. Constantin [3], C. Avramescu [2], T. Hallam [8], J. Morchalo [10].
In these papers, the function Ψ is a scalar continuous function (and increasing, differentiable and bounded in [1],
nondecreasing and such that Ψ(t) ≥ 1 on R+ in [3]).
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Let Rd be the Euclidean d-space. For x = (x1, x2, . . . , xd)T ∈ Rd, let ‖x‖ = max {|x1|, |x2|, . . . , |xd|} be the
norm of x. For a d × d real matrix A, we define the norm |A| by |A| = sup‖x‖≤1 ‖Ax‖. Let Ψi : R+ → (0,∞),
i = 1, 2, . . . , d, be continuous functions and

Ψ = diag[Ψ1,Ψ2, . . . ,Ψd].

Definition 1.1. A function ϕ : R+ → Rd is said to be Ψ-bounded on R+ if Ψ(t)ϕ(t) is bounded on R+.

Let A be a continuous d× d real matrix and the associated linear differential system

y′ = A(t)y.(2)

Let Y be the fundamental matrix of (2) for which Y (0) = Id (identity d× d matrix).
Let X1 denote the subspace of Rd consisting of all vectors which are values of Ψ-bounded solutions of (2) for

t = 0 and let X2 an arbitrary fixed subspace of Rd, supplementary to X1.
We suppose that X2 is a closed subspace of Rd. We denote by P1 the projection of Rd onto X1 (that is P1 is

a bounded linear operator P1 : Rd → Rd, P 2
1 = P1, Ker P1 = X2) and P2 = I−P1 the projection onto X2.

In our papers [5] and [6] we have proved the following results (Lemma 1, Lemma 2 and respectively Theorem
2.1.):

Lemma 1. Let Y (t) be an invertible matrix which is a continuous function of t on R+ and let P be a projection.
If there exist a continuous function ϕ : R+ → (0,∞) and a positive constant M such that

t∫
0

ϕ(s)|Ψ(t)Y (t)PY −1(s)Ψ−1(s)| ds ≤ M, for all t ≥ 0,

and
∞∫
0

ϕ(s) ds = +∞,
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then, there exists a constant N > 0 such that

|Ψ(t)Y (t)P | ≤ Ne−M−1 ∫ t
0 ϕ(s) ds, for all t ≥ 0.

Consequently,

lim
t→∞

|Ψ(t)Y (t)P | = 0.

Lemma 2. Let Y (t) be an invertible matrix which is a continuous function of t on R+ and let P be a projection.
If there exists a constant M > 0 such that

∞∫
t

|Ψ(t)Y (t)PY −1(s)Ψ−1(s)| ds ≤ M, for all t ≥ 0,

then, for any vector x0 ∈ Rd such that Px0 6= 0,

lim sup
t→∞

‖Ψ(t)Y (t)Px0‖ = +∞.

Theorem 2.1. If A is a continuous d × d matrix, then the system (1) has at least one Ψ-bounded solution on
R+ for every continuous and Ψ-bounded function f on R+ if and only if there is a positive constant K such that

t∫
0

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)| ds

+

∞∫
t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)| ds ≤ K,(3)
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for all t ≥ 0.

2. The main results

In this section we give the main results of this note.

Theorem 2.1. Let A be a continuous d× d real matrix such that

|Ψ(t)A(t)Ψ−1(t)| ≤ L, for all t ≥ 0.

Let Ψ(t) such that

|Ψ(t)Ψ−1(s)| ≤ M, for t ≥ s ≥ 0.

Then, the system (1) has at least one Ψ-bounded solution on R+ for every continuous and Ψ-bounded function f
on R+ if and only if there are two positive constants K1 and α such that

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)| ≤ K1e−α(t−s), 0 ≤ s ≤ t,

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)| ≤ K1e−α(s−t), 0 ≤ t ≤ s,

(4)

Proof. First, we prove the ”only if“ part.
From the hypotheses and Theorem 2.1, [6], it follows that there is a positive constant K such that

t∫
0

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)| ds +

∞∫
t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)| ds ≤ K,

for all t ≥ 0.
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From Y ′(t) = A(t)Y (t), t ≥ 0, it follows that

Y (t) = Y (s) +

t∫
s

A(u)Y (u) du, for t ≥ s ≥ 0.

Therefore,

Ψ(t)Y (t)Y −1(s)Ψ−1(s) = Ψ(t)Ψ−1(s) +

t∫
s

Ψ(t)A(u)Y (u)Y −1(s)Ψ−1 (s)du.

Thereafter, for t ≥ s ≥ 0,

|Ψ(t)Y (t)Y −1(s)Ψ−1(s)|

≤ |Ψ(t)Ψ−1(s)|+
t∫

s

|Ψ(t)Ψ−1(u)‖Ψ(u)A(u)Ψ−1(u)‖Ψ(u)Y (u)Y −1(s)Ψ−1(s)| du.

From the hypotheses and Gronwall’s inequality it follows that

|Ψ(t)Y (t)Y −1(s)Ψ−1(s)| ≤ MeLM(t−s), t ≥ s ≥ 0.(5)

Now, we show that (3) and (5) imply (4).
For v ∈ Rd and 0 ≤ s ≤ t ≤ s + 1, we have

‖Ψ(t)Y (t)P1v‖ = ‖Ψ(t)Y (t)Y −1(s)Ψ−1(s)Ψ(s)Y (s)P1v‖
≤ |Ψ(t)Y (t)Y −1(s)Ψ−1(s)| · ‖Ψ(s)Y (s)P1v‖
≤ MeLM‖Ψ(s)Y (s)P1v‖

(6)
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For P1v 6= 0, let

q(t) = ‖Ψ(t)Y (t)P1v‖−1 and Q(t) =

t∫
0

q(s) ds.

We have

q(t) ≥ M−1e−LMq(s), for 0 ≤ s ≤ t ≤ s + 1.

Thus,

Q(s + 1) =

s+1∫
0

q(u) du ≥
s+1∫
s

q(u) du ≥ M−1e−LMq(s).

From Lemma 1, [5], it follows that

‖Ψ(t)Y (t)P1v‖ ≤ KQ−1(s + 1)e−K−1(t−s−1), for t ≥ s + 1

and hence

‖Ψ(t)Y (t)P1v‖ ≤ KMeLMq−1(s)e−K−1(t−s−1)

= KMeLMe−K−1(t−s−1)‖Ψ(s)Y (s)P1v‖, for t ≥ s + 1.(7)

From (6) and (7) it results that

‖Ψ(t)Y (t)P1v‖ ≤ N1e−K−1(t−s)‖Ψ(s)Y (s)P1v‖,(8)

for t ≥ s and v ∈ Rd, where N1 = MeLM+K−1
max{1,K}.

Similarly, for P2v 6= 0, let

r(t) = ‖Ψ(t)Y (t)P2v‖−1.
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From (3) and Lemma 2, [5], it follows that the function R(t) =
∫∞

t
r(u) du exists for t ≥ 0 and

r−1(t)
∫ T

t

r(u) du ≤ K, for T ≥ t ≥ 0.(9)

Hence,

R′(t) = −r(t) ≤ −K−1R(t)

and then,

R(t) ≤ R(t0)e−K−1(t−t0), t ≥ t0 ≥ 0.(10)

On the other hand, for t ≥ s ≥ 0, we have

r−1(t) = ‖Ψ(t)Y (t)P2v‖ = ‖Ψ(t)Y (t)Y −1(s)Ψ−1(s)Ψ(s)Y (s)P2v‖
≤ |Ψ(t)Y (t)Y −1(s)Ψ−1(s)| · ‖Ψ(s)Y (s)P2v‖
≤ MeLM(t−s)r−1(s).

Consequently,

r(s) ≥ M−1e−LM(s−t)r(t), s ≥ t ≥ 0.

Hence,

R(t) ≥ M−1r(t)

∞∫
t

e−LM(s−t) ds = L−1M−2r(t).
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Combining this with (9) and (10), we obtain, for t ≥ t0 ≥ 0:

‖Ψ(t)Y (t)P2v‖ = r−1(t) ≥ L−1M−2R−1(t)

≥ L−1M−2R−1(t0)eK−1(t−t0)

= (LM2)−1eK−1(t−t0)‖Ψ(t0)Y (t0)P2v‖.

It results that

‖Ψ(t)Y (t)P2v‖ ≤ N2e−K−1(s−t)‖Ψ(s)Y (s)P2v‖,(11)

for s ≥ t ≥ 0, v ∈ Rd, where N2 = LM2.
Now, we show that

pi(t) = |Ψ(t)Y (t)PiY
−1(t)Ψ−1(t)|, i = 1, 2,

are bounded for t ≥ 0. Let σ > 0 be such that

p = N−1
2 eK−1σ −N1e−K−1σ > 0.

From (8) and (11) we deduce that

|Ψ(t + σ)Y (t + σ)P1Y
−1(t)Ψ−1(t)| ≤ N1e−K−1σp1(t),

|Ψ(t + σ)Y (t + σ)P2Y
−1(t)Ψ−1(t)| ≥ N−1

2 eK−1σp2(t).

Hence,

|p−1
1 (t)Ψ(t + σ)Y (t + σ)P1Y

−1(t)Ψ−1(t)

+ p−1
2 (t)Ψ(t + σ)Y (t + σ)P2Y

−1(t)Ψ−1(t)| ≥ p.
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It follows that

|Ψ(t + σ)Y (t + σ)Y −1(t)Ψ−1(t)(p−1
1 (t)Ψ(t)Y (t)P1Y

−1(t)Ψ−1(t)

+ p−1
2 (t)Ψ(t)Y (t)P2Y

−1(t)Ψ−1(t))| ≥ p,

or

p ≤ |p−1
1 (t)Ψ(t)Y (t)P1Y

−1(t)Ψ−1(t)

+ p−1
2 (t)Ψ(t)Y (t)P2Y

−1(t)Ψ−1(t)|MeLMσ.

Therefore,

pM−1e−LMσ

≤ |p−1
1 (t)Id + (p−1

2 (t)− p−1
1 (t))Ψ(t)Y (t)P2Y

−1(t)Ψ−1(t)|
≤ p−1

1 (t) + |p−1
2 (t)− p−1

1 (t)|p2(t) = p−1
1 (t)(1 + |p1(t)− p2(t)|)

= p−1
1 (t)(1 +

∣∣|Ψ(t)Y (t)P1Y
−1(t)Ψ−1(t)| − |Ψ(t)Y (t)P2Y

−1(t)Ψ−1(t)|
∣∣)

≤ p−1
1 (t)(1 + |Ψ(t)Y (t)P1Y

−1(t)Ψ−1(t) + Ψ(t)Y (t)P2Y
−1(t)Ψ−1(t)|)

= 2p−1
1 (t)

It follows that

p1(t) ≤ 2Mp−1eLMσ = M, t ≥ 0.(12)

Similarly,

p2(t) ≤ M, t ≥ 0.(13)
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Finally, by (8), (11), (12) and (13) we deduce that

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)| ≤ K1e−K−1(t−s), 0 ≤ s ≤ t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)| ≤ K1e−K−1(s−t), 0 ≤ t ≤ s,

where K1 = M max{N1, N2}.
Now, we prove the ”if“ part.

From (4), for t ≥ 0 we have
t∫

0

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)| ds +

∞∫
t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)| ds

≤ K1

t∫
0

e−α(t−s) ds + K1

∞∫
t

e−α(s−t) ds <
2K1

α
.

From this and Theorem 2.1, [6], it follows the conclusion of theorem. The proof is now complete. �

Remark 2.1. If Ψ(t) and fundamental matrix Y (t) do not fulfil the condition (5), then the conditions (4)
may not be true.

This is shown by the

Example 2.1. Consider the linear system (2) with A(t) =
(
−2 et

0 2

)
.

A fundamental matrix for the system (2) is

Y (t) =
(

e−2t 1
5 (e3t − e−2t)

0 e2t

)
.
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Consider

Ψ(t) =
(

e−t 0
0 e−2t

)
.

We have

Ψ(t)Y (t)Y −1(s)Ψ−1(s) =
(

e−3(t−s) 1
5e2t(1− e−5(t−s))

0 1

)
.

This shows that (5) is not satisfied.
Instead,

Ψ(t)Ψ−1(s) =
(

e−(t−s) 0
0 e−2(t−s)

)
,

is bounded for 0 ≤ s ≤ t.
But then, in this case, we have

P1 =
(

1 0
0 0

)
, P2 =

(
0 0
0 1

)
.

Thereafter,

Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s) =

(
e−3(t−s) 1

5e−3t(1− e5s)
0 0

)
,

which is unbounded for 0 ≤ s ≤ t.
Thus, the conditions (4) is not true.

Remark 2.2. If in Theorem 2.1 we put Ψ(t) = Id, then the conclusion of the Theorem 3, Chapter V, [4],
follows.
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We prove finally a theorem in which we will see that the asymptotic behavior of solutions of (1) is determined
completely by the asymptotic behavior of f(t) as t →∞.

Theorem 2.2. Suppose that:
1. the fundamental matrix Y (t) of (2) satisfies the conditions

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)| ≤ Ke−α(t−s), 0 ≤ s ≤ t,

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)| ≤ Ke−α(s−t), 0 ≤ t ≤ s,

where K and α are positive constants and P1, P2 are supplementary projections, Pi 6= 0;
2. the continuous and Ψ-bounded function f : R+ → Rd satisfies one of the following conditions:

a) lim
t→∞

‖Ψ(t)f(t)‖ = 0,

b)
∞∫
0

‖Ψ(t)f(t)‖ dt is convergent,

c) lim
t→∞

t+1∫
t

‖Ψ(s)f(s)‖ ds = 0.

Then, every Ψ-bounded solution x(t) of (1) is such that

lim
t→∞

‖Ψ(t)x(t)‖ = 0.

Proof. a) It follows from the Theorem 2.1, [6].
b) It is similar to the proof of Theorem 2.1, [6].
c) By the hypothesis 2, it follows that there exists a positive constant C such that

t+1∫
t

‖Ψ(s)f(s)‖ ds ≤ C, for all t ≥ 0.
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Let x(t) be a Ψ-bounded solution of (1). There is a positive constant M such that ‖Ψ(t)x(t)‖ ≤ M , for all t ≥ 0.
Consider the function

y(t) = x(t)− Y (t)P1x(0)−
t∫

0

Y (t)P1Y
−1(s)f(s) ds +

∞∫
t

Y (t)P2Y
−1(s)f(s) ds,

for all t ≥ 0.
For v ≥ t ≥ 0 we have

‖
v∫

t

P2Y
−1(s)f(s) ds‖ ≤

∫ v

t

‖P2Y
−1(s)f(s)‖ ds

≤ |Y −1(t)Ψ−1(t)|
v∫

t

∣∣Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)

∣∣ · ‖Ψ(s)f(s)‖ ds

≤ K|Y −1(t)Ψ−1(t)|
v∫

t

e−α(s−t)‖Ψ(s)f(s)‖ ds

≤ KC(1− e−α)−1|Y −1(t)Ψ−1(t)|,

by using a Lemma of J. L. Massera and J. J. Schäffer, [9].
It follows that the integral

∞∫
t

Y (t)P2Y
−1(s)f(s) ds

is convergent.
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Clearly, the function y(t) is continuously differentiable on R+.
For t ≥ 0, we have

y′(t) = x′(t)− Y ′(t)P1x(0)− Y ′(t)

t∫
0

P1Y
−1(s)f(s) ds− Y (t)P1Y

−1(t)f(t)

+ Y ′(t)

∞∫
t

P2Y
−1(s)f(s) ds− Y (t)P2Y

−1(t)f(t)

= A(t)x(t) + f(t)−A(t)Y (t)P1x(0)−A(t)Y (t)

t∫
0

P1Y
−1(s)f(s)ds

+ A(t)Y (t)

∞∫
t

P2Y
−1(s)f(s)ds− Y (t)(P1 + P2)Y −1(t)f(t)

= A(t)y(t).

Thus, the function y(t) is a solution of the linear system (2).
Since the hypothesis 1. implies that lim

t→∞
Ψ(t)Y (t)P1 = 0 (see Lemma 1, [5]), there exists a positive constant N

such that |Ψ(t)Y (t)P1| ≤ N for all t ≥ 0.
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It follows that

‖Ψ(t)y(t)‖ ≤ ‖Ψ(t)x(t)‖+ |Ψ(t)Y (t)P1| · ‖x(0)‖

+
∫ t

0

∣∣Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)

∣∣ · ‖Ψ(s)f(s)‖ ds

+

∞∫
t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ ds

≤ M + N‖x(0)‖+ K

t∫
0

e−α(t−s)‖Ψ(s)f(s)‖ ds

+ K

∞∫
t

e−α(s−t)‖Ψ(s)f(s)‖ ds

≤ M + N‖x(0)‖+ 2KC(1− e−α)−1, for all t ≥ 0,

by using of above Lemma of Massera and Schäffer.
Thus, the function y(t) is a Ψ-bounded solution of the linear system (2).
On the other hand, P1y(0) = 0. Therefore, y(t) = Y (t)y(0) = Y (t)P2y(0). If P2y(0) 6= 0, from the Lemma 2,

[5], it follows that lim sup
t→∞

‖Ψ(t)y(t)‖ = +∞, which is contradictory. Thus, P2y(0) = 0 and then y(t) = 0 for

t ≥ 0.
Thus, for t ≥ 0 we have

x(t) = Y (t)P1x(0) +

t∫
0

Y (t)P1Y
−1(s)f(s) ds−

∞∫
t

Y (t)P2Y
−1(s)f(s) ds.
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Now, for a given ε > 0, there exists t1 ≥ 0 such that
t+1∫
t

‖Ψ(s)f(s)‖ ds < ε(4K)−1(1− e−α), for all t ≥ t1.

Moreover, there exists t2 > t1 such that, for t ≥ t2,

|Ψ(t)Y (t)P1| ≤
ε

2

‖x(0)‖+

t1∫
0

‖Y −1(s)f(s)‖ ds

−1

.

Then, for t ≥ t2 we have, by using of above Lemma of Massera and Schäffer,
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‖Ψ(t)x(t)‖ ≤ |Ψ(t)Y (t)P1|‖x(0)‖+

t1∫
0

|Ψ(t)Y (t)P1|‖Y −1(s)f(s)‖ ds

+

t∫
t1

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ ds

+
∫ ∞

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ ds

≤ |Ψ(t)Y (t)P1|(‖x(0)‖+
∫ t1

0

‖Y −1(s)f(s)‖ ds)

+ K

t∫
t1

e−α(t−s)‖Ψ(s)f(s)‖ ds + K

∞∫
t

e−α(s−t)‖Ψ(s)f(s)‖ ds

< ε.

This shows that lim
t→∞

‖Ψ(t)x(t)‖ = 0.
The proof is now complete. �

Remark 2.3. If in Theorem we put A(t) = A, Ψ(t) = ϕk(t)Id, then the conclusion of the Theorem 3.1, [3],
follows.

Remark 2.4. If the function f does not fulfill the condition 2 of the theorem, then Ψ(t)x(t) may be such that

lim
t→∞

‖Ψ(t)x(t)‖ 6= 0.
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This can be seen from

Example 2.2. Consider the linear system (1) with

A(t) =
(

a 0
0 b

)
and f(t) =

(
e(a+1)t

e(b−2)t

)
,

where a, b ∈ R.
A fundamental matrix for the homogeneous system (2) is

Y (t) =
(

eat 0
0 ebt

)
.

Consider

Ψ(t) =
(

e−(a+1)t 0
0 e(1−b)t

)
.

The first condition of the Theorem 2.2. is satisfied with

P1 =
(

1 0
0 0

)
P2 =

(
0 0
0 1

)
, α = 1, K = 1.

Then, we have ‖Ψ(t)f(t)‖ = 1 for all t ≥ 0 and

Ψ(t)x(t) =
(

c1e−t + 1
c2et − 1

2e−t

)
9 0 as t →∞.

Remark 2.5. This Example shows that the components of the solution x(t) have a mixed asymptotic behavior.

Acknowledgment. The author would like to thank very much the referee of this paper for valuable comments
and suggestions.
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353–360.

A. Diamandescu, Department of Applied Mathematics, University of Craiova, 13, “Al. I. Cuza” st., 200585 Craiova, Romania.,

e-mail : adiamandescu@central.ucv.ro


