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NOTE ON THE ¥-BOUNDEDNESS OF THE SOLUTIONS
OF A SYSTEM OF DIFFERENTIAL EQUATIONS

A. DIAMANDESCU

ABSTRACT. It is proved a necessary and sufficient condition for the existence of
W-bounded solutions of a linear nonhomogeneous system of ordinary differential
equations.

1. INTRODUCTION

The purpose of this note is to give a necessary and sufficient condition so that the
nonhomogeneous system

(1) ¥ = Alt)xr + f(t)

have at least one W-bounded solution for every continuous and ¥-bounded func-
tion f, in supplementary hypothesis that A(t) is a ¥-bounded matrix on R.

Here, ¥ is a continuous matrix function. The introduction of the matrix func-
tion ¥ permits to obtain a mixed asymptotic behavior of the components of the
solutions.

The problem of ¥-boundedness of the solutions for systems of ordinary dif-
ferential equations has been studied by many authors, as e.q. O. Akinyele [1],
A. Constantin [3], C. Avramescu [2], T. Hallam [8], J. Morchalo [10]. In these pa-
pers, the function ¥ is a scalar continuous function (and increasing, differentiable
and bounded in [1], nondecreasing and such that ¥(¢) > 1 on Ry in [3]).

Let R? be the Euclidean d-space. For z = (x1,%2,...,24)T € R% let ||z] =
max {|x1], |x2], ..., |zqa|} be the norm of x. For a d x d real matrix A, we define
the norm [A| by |A] = supj, < [|Az[|. Let ¥; : Ry — (0,00), i=1,2,...,d, be
continuous functions and

U= diag[\lll, \112, ey \I/d]

Definition 1.1. A function ¢ : Ry — R? is said to be WU-bounded on R if

U(t)p(t) is bounded on R, .

Let A be a continuous d x d real matrix and the associated linear differential
system

(2) y = At)y.
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Let Y be the fundamental matrix of (2) for which Y (0) = I (identity d x d
matrix).

Let X; denote the subspace of R? consisting of all vectors which are values of
U-bounded solutions of (2) for t = 0 and let X5 an arbitrary fixed subspace of R%,
supplementary to Xj.

We suppose that X5 is a closed subspace of R¢. We denote by P, the projection
of R? onto X; (that is P, is a bounded linear operator P, : R? — R4 PZ = Py,
Ker P; = X3) and P, = I—P; the projection onto Xs.

In our papers [5] and [6] we have proved the following results (Lemma 1,
Lemma 2 and respectively Theorem 2.1.):

Lemma 1. Let Y (t) be an invertible matriz which is a continuous function of t
on Ry and let P be a projection.

If there exist a continuous function ¢ : Ry — (0,00) and a positive constant M
such that

/<p(s)|\I'(t)Y(t)PY71(s)\I/71(s)| ds < M, for all t >0,
0

and

o0

[ty

0
then, there exists a constant N > 0 such that
WY (#)P| < Ne™ ' Jaw®ds - ror i1 ¢ > 0.
Consequently,
lim |U(¢)Y (¢t)P| = 0.

t—oo

Lemma 2. Let Y (t) be an invertible matriz which is a continuous function of t
on Ry and let P be a projection.
If there exists a constant M > 0 such that

/|\Il(t)Y(t)PY_1(s)\Il_1(s)| ds < M, for all t >0,
t

then, for any vector xo € R? such that Pxo # 0,

lim sup || ¥ (¢)Y () Pzo|| = +oo.
t—oo

Theorem 2.1. If A is a continuous d X d matriz, then the system (1) has at least
one V-bounded solution on Ry for every continuous and V-bounded function f on
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R4 if and only if there is a positive constant K such that

/|\I!(t)Y(t)P1Y’1(s)\II’1(s)| ds
0

(3) + /|\I/(t)Y(t)P2Y_1(s)\I/_1(s)| ds < K,
for allt > 0.

2. THE MAIN RESULTS

In this section we give the main results of this note.
Theorem 2.1. Let A be a continuous d X d real matriz such that

ARG T )| <L, forallt>0.
Let W(t) such that
[T ()W~ 1(s)| < M, fort>s>0.

Then, the system (1) has at least one W-bounded solution on Ry for every continu-
ous and V-bounded function f on Ry if and only if there are two positive constants
K1 and a such that

|T)Y () PY ~L(s) T (s)| < Kpe () 0
(W)Y (£)PY M (s)T ()| < Kye 70 0

IN
IA

s <t,

IN

t<s,

Proof. First, we prove the "only if“ part.
From the hypotheses and Theorem 2.1, [6], it follows that there is a positive
constant K such that

/ W)Y (£ PY ()0 (5)] ds + / W)Y (1) Py ()0 (s)] ds < K,
0 t

for all t > 0.
From Y'(t) = A(t)Y (¢), t >0, it follows that

¢
Y()=Y(s)+ /A(u)Y(u) du, for t > s > 0.
Therefore,

U A)Y (u)Y " Hs)T ™! (s)du.

=
=
=
B
=
S
=
I
=
=
S
=
+
B
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Thereafter, for ¢t > s > 0,
()Y ()Y~ (s)0 ™ (s)]

< I‘I’(t)‘l’_l(S)l+/\‘If(t)\l’_l(U)||\I’(U)A(u)‘lf_l(U)II‘I’(u)Y(U)Y_l(S)‘P_l(S)\du~

From the hypotheses and Gronwall’s inequality it follows that
(5) [T)Y ()Y " Hs) Tl (s)| < MePME=9) > 5>0.

Now, we show that (3) and (5) imply (4).
For v € R4 and 0 < s <t <s+1, we have

[ @)Y ()Pl = [|¥ ()Y ()Y ' ()T (s)U()Y (5) Pro]|
(6) S[E@RYOY ()P (s)] - U ()Y (s) Pro]
< MeM||W(s)Y (s)Pyo|
For Pyv # 0, let

q(t) = [[T(OY () Pro[| =" and Q1)

0/ q(s)ds.

q(t) ZMfle*LMq(s), for0<s<t<s-+1.

We have

Thus,

s+1 s+1
Q(s+1)= / q(u) du > / q(u)du > M~ te "M g(s).

0 s

From Lemma 1, [5], it follows that

[T (OY ()Pl < KQ s+ 1)e ™ t=s=1  fort>s+1
and hence
[e@Y (@)Pwll < KMeMg (s)e T 07
(7) = KMeMe K7 t=s=1) g (s)Y (s)P|,  fort>s+1.
From (6) and (7) it results that

IN

(®) 12 ()Y () Pro]| < Nie ™ ) u(s)Y (s)Pro],

for t > s and v € R%, where N; = MelM+E™! max{1, K}.
Similarly, for Pyv # 0, let

r(t) = [T (Y (1) Pavl| =
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From (3) and Lemma 2, [5], it follows that the function R(t) = [,” r(u) du exists

for ¢ > 0 and t
T
(9) r_l(t)/t r(u)du < K, for T >t¢>0.
Hence,
R(t) = —r(t) < =K 'R(t)
and then,
(10) R(t) < R(to)e K 't=t0) ¢ >4 >0.
On the other hand, for t > s > 0, we have
r(E) = [WOYOPl = WO ()0 (5)U(s)Y () Paol]

< [ EOYOY )T ()] - ()Y (s) Povl|
< MeLM(t*S)rfl(s).
Consequently,
r(s) > M~ te EME=tp), s> ¢>0.
Hence,

R(t) > M~ 'r(t) /e—LM<S—t> ds = L™ M~2r(t).
t

Combining this with (9) and (10), we obtain, for ¢t > to > 0:
Ie@)Y )Pl = +7'(t) = LT M2RH(2)
> LM T2R M (tg)eR (0t
= (LMP) e[ (1) (o) Pov]
It results that
(1) 1Y (8)Povl] < Noe™ =0 (s)Y (s) P

for s >t >0, veR? where Ny = LM?2.
Now, we show that
pi() = [LOYOPY I OU (1), i=1,2,
are bounded for ¢ > 0. Let o > 0 be such that

p= N{leK_l" — Nie7® 7> 0.

From (8) and (11) we deduce that

Ut +0)Y(t+0)PY )T ()| < Nie X '9pi(b),
[t +o)Y (t+ )Y THOUTHB] > Ny e po(t).
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Hence,
P ()Y (E+0)Y (t+ o) PY ()T (1)
+ (U (L + )Y (t+ o) RBY HH) T (1) > p.
It follows that
(W(t+0)Y (t+0)Y LW () (pr  ()TR)Y ()Y ()T (1)
+py (OU(O)Y () PY )P (1)] > p,

p <l OTOY@)PY )T
+ py (V@)Y (1) PY ()W (1) Me" MO
Therefore,
pM—le—LMcr
< fpr L+ (7 1) = pr )P O)Y (D RY T HH) ()]
< prt®)+ e ) - pr ()\pz(t) Pt )1+ |pa(t) — palt )I)
= pll(t)1+|\\1’ OY (O PY LW ()] = [R@)Y () PY ()T ()]])
< prtH )Y(t)PlY HOUTHE) + U ()Y () PY ()‘1"1(75)\)
= 2.7?11(75)
It follows that
(12) pi(t) < 2Mp~telMo = 1J, t>0.
Similarly,
(13) po(t) <M,  t>0.
Finally, by (8), (11), (12) and (13) we deduce that
WY (BPY ()8 Hs)| < Kpe K00 0<s <t
WY OPY ()W (s)| < Kie KT 0<t<s,

where K; = M max{Ny, Na}.

Now, we prove the ”if* part.
From (4), for ¢ > 0 we have

/\\If(t)Y(t)P1Y*1(s)\Ir1(s)|ds+/|x11(t)Y(t)P2Y*1(s)xIr1(s)\ds
0 t

oo

t
2K
< K;j /e*a(tfs) ds + Ky /e*a(sft) ds < ==L,

(0%
0 t

From this and Theorem 2.1, [6], it follows the conclusion of theorem. The proof
is now complete. O
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Remark 2.1. If ¥U(¢) and fundamental matrix Y (¢) do not fulfil the condition
(5), then the conditions (4) may not be true.

This is shown by the

9 o
Example 2.1. Consider the linear system (2) with A(¢) = ( 2 ¢ )

A fundamental matrix for the system (2) is

vip= (o) HEL).
Consider
v = (% )
We have
TH)Y ()Y " L(s)T1(s) = < 673((;75) Le2t(1 1675(1575)) >
This shows that (5) is not satisfied.
Instead,

_ e (t=5) 0
wore) = ()7 s ).

is bounded for 0 < s < t.
But then, in this case, we have

10 0 0
n(oo) »=(07)

873(tfs) %e*?’t(l _ e55) )

Thereafter,

V(Y (H)PY H(s)U T (s) = ( 0 0

which is unbounded for 0 < s < ¢.
Thus, the conditions (4) is not true.

Remark 2.2. If in Theorem 2.1 we put ¥(t) = I, then the conclusion of the
Theorem 3, Chapter V, [4], follows.

We prove finally a theorem in which we will see that the asymptotic behavior
of solutions of (1) is determined completely by the asymptotic behavior of f(t) as
t — 00.

Theorem 2.2. Suppose that:
1. the fundamental matriz Y (t) of (2) satisfies the conditions
WY ()PY ()0 (s)] < Ke 0, 0<s<t,
WY ()PY ()T (s) < Ke oG, 0<i<s,

where K and « are positive constants and Py, Py are supplementary pro-
jections, P; # 0;
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2. the continuous and V-bounded function f : Ry — R satisfies one of the
following conditions:

a) lim [[W(2)f(1)]| =0,

f W (t)f(¢)] dt is convergent,

) Jim [ W1 (5)] ds = 0.

Then, every W-bounded solution x(t) of (1) is such that
tlim | (t)z(t)]| = 0.

Proof. a) It follows from the Theorem 2.1, [6].
b) It is similar to the proof of Theorem 2.1, [6].
¢) By the hypothesis 2, it follows that there exists a positive constant C' such
that
t+1
/ 1T (s)f(s)]|ds < C, for all t > 0.
t
Let x(t) be a ¥-bounded solution of (1). There is a positive constant M such that
1€ (t)x(t)]] < M, for all t > 0.

Consider the function
o0

y(t) = z(t) = Y (&) Prz(0 /Y YPLY 2 (s)f(s) dS+/Y(t)P2Y71(S)f(S) ds,

for all t > 0.
For v > ¢t > 0 we have

H / Y@ < [Py e ds

1| / ()Y (1) PyY L ()01 (s)] - [[(s) £ (5)] ds

IN

IN

Ky 16w / a0 | @ (5)£(s)]| ds

< KC(l—e )1|Y ®)w= (1),

by using a Lemma of J. L. Massera and J. J. Schéffer, [9].
It follows that the integral

oo

/Y(t)PgY_l (5)f(s)ds
t
is convergent.
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Clearly, the function y(¢) is continuously differentiable on R .
For t > 0, we have

t

y(t) = 2'(t) = Y'(t)Prx(0) — Y'(t)/P1Y_1(8)f(S) ds =Y ()PY (1) f(t)

0

/& (5)f(s)ds — Y (£) PY ~1(8) f (1)

= Aa(0) + £(0) - AY(OP0) - AOY() [ Py (5)5(s)ds
0

Thus, the function y(t) is a solution of the linear system (2).
Since the hypothesis 1. implies that tlim V()Y (t)Py = 0 (see Lemma 1, [5]), there

exists a positive constant N such that |¥(¢)Y (¢)P1| < N for all ¢ > 0.
It follows that

@)y @

IN

@]+ [OY (-2 0)]
+ [ e ony e o) [l i

+/I‘P(t)Y(t)PQY’l(S)‘I”l(S)III\I/(S)f(S)IIds

IN

M4 N + K [ e e f(s)] ds

HE [t s ds

IN

M + N||z(0)|| + 2KC(1 —e™ )1, for all t > 0,

by using of above Lemma of Massera and Schéffer.

Thus, the function y(t) is a U-bounded solution of the linear system (2).

On the other hand, Pyy(0) = 0. Therefore, y(t) = Y (¢)y(0) = Y (¢)Py(0).
If Poy(0) # 0, from the Lemma 2, [5], it follows that hmsup||\Il( Jy(@)]| = +oo,

which is contradictory. Thus, Poy(0) = 0 and then y(¢) = O for t>0.
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Thus, for t > 0 we have

t 0

z(t) = Y (t)Prz(0) +/Y(t)P1Y*1(s)f(s) ds — /Y(t)PQY’l(s)f(s)ds.

0 t

Now, for a given € > 0, there exists ¢; > 0 such that
/ [T (s)f(s)]|ds < e(4K)" (1 —e™®), for all t > ¢;.
t

Moreover, there exists to > t1 such that, for ¢t > to,
-1
ty

YO P <5 [ 1O+ [ 1y o))
0

Then, for ¢t > t; we have, by using of above Lemma of Massera and Schéffer,

(@)@l

IA

\‘IJ(t)Y(t)Plle(O)IIJr/I‘I/(t)Y(t)PlIHY‘l(S)f(S)Hds
0

+ /I\I’(t)Y(t)P1Y‘1(S)\P_1(S)III\I’(S)f(S)HdS

-+l W)Y (1) Py ()T (5)][[(s) £ ()] ds

IA

\wa»«wpumxmnw+A1HY*%@fwmd@

t o)
FE [ I ) ds + K [ o) () ds

< e
This shows that tlim 1 (&)x(t)|| = 0.
—00

The proof is now complete.

O

Remark 2.3. If in Theorem we put A(t) = A, U(t) = ¢©*(t)I, then the

conclusion of the Theorem 3.1, [3], follows.

Remark 2.4. If the function f does not fulfill the condition 2 of the theorem,

then W(¢)z(t) may be such that
Jim [W(e)(0)] #0.

This can be seen from
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Example 2.2. Consider the linear system (1) with

(a+1)t
A(t) = ( g 2 ) and ft) = ( 2(b72)t ) )

where a,b € R.

A fundamental matrix for the homogeneous system (2) is

V() = ( egt Nt )

Consider

ef(a+1)t 0
‘I'<t) = ( 0 1—b)t ) :

o

The first condition of the Theorem 2.2. is satisfied with

10 0 0
Pl(o 0) P2<0 1>, Oé—l, K=1.

Then, we have ||U(¢)f(¢)|| =1 for all t > 0 and

cle*t +1
coel — %e*t

U(t)a(t) = (

Remark 2.5. This Example shows that the components of the solution z(t)

) - 0 as t — oo.

have a mixed asymptotic behavior.
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