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MULTIVARIATE BIRKHOFF-LAGRANGE INTERPOLATION
SCHEMES AND CARTESIAN SETS OF NODES

N. CRAINIC

Abstract. In this paper we study the relevance of cartesian shapes to the solvabil-
ity of Birkhoff-Lagrange interpolation schemes.

1. Introduction

The bivariate1 Birkhoff-Lagrange interpolation problem depends on a finite set
Z ⊂ R2 (of “nodes”), and a lower set S ⊂ N2 defining the interpolation space

PS = {P ∈ R[x, y] : P =
∑

(i,j)∈S

ai,jx
iyj}.

Recall [3] that S is lower if

(i, j) ∈ S =⇒ R(i, j) ⊂ S,

where R(i, j) is the rectangle

R(i, j) = {(i′, j′) ∈ N2 : 0 ≤ i′ ≤ i, 0 ≤ j′ ≤ j}.
Given such a scheme (Z, S), the interpolation problem consists of finding the
polynomials P ∈ PS satisfying the equations

P (z) = c(z), ∀ z ∈ Z,(1.1)

where c(z) are given arbitrary constants. One says that (Z, S) is solvable if, for
any choice of the constants c(z), (1.1) has at least one solution P ∈ PS . If the
solution is unique, one says that (Z, S) is regular.

The Birkhoff-Lagrange schemes are a particular case of uniform Birkhoff
schemes [2], and the present work should be understood in the general context
of finding the influence that the shape of Z has on the regularity of the schemes.
In this paper we discuss particular shapes (cartesian shapes, cf. Section 2), and
we explain the influence that they have on the regularity/solvability of Birkhoff-
Lagrange schemes. While referring to the next section for the most general results,
we mention here (as the main result) the following:
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1Our results hold in arbitrary dimension, and the only reason for restricting to the bi-variate

case is notational simplicity.
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Theorem 1.1. Given a set of nodes Z, there exists at least one lower set S
with the property that the Birkhoff-Lagrange scheme (Z, S) is regular. Moreover,
S is unique if and only if Z is cartesian.

2. Cartesian sets of nodes

In this section we introduce the notion of cartesian sets of nodes.

Definition 2.1. We say that a set Z of nodes is cartesian if there exists a lower
set S such that Z can be written as

Z = {(xi, yj) : (i, j) ∈ S},
where the xi’s are distinct real numbers, and similarly the yj ’s. We also say that
Z is S-cartesian.

Remark 2.1. This notion is useful for understanding “special shapes” for the
set of nodes (and not only). For instance, in the case of the rectangles S = R(p, q),
one recovers the notion of rectangular sets of nodes, i.e. sets which are at the
intersection of (p + 1) distinct vertical lines with (q + 1) distinct horizontal lines.

In general, any set of nodes Z induces two lower sets Sx(Z), and Sy(Z), which
reflect the shape of Z. To describe Sy(Z), one covers Z by lines l0, . . . , lk parallel
to the OY axis, and one defines the numbers ni so that on each line li there are
exactly ni + 1 points of Z. We index the lines so that n0 ≥ n1 ≥ . . . ≥ nk, and we
define

Sy(Z) = {(i, j) : 0 ≤ i ≤ k, 0 ≤ j ≤ ni}.(2.1)

The lower set Sx(Z) is defined similarly, by interchanging the role of x and y.

Remark 2.2. One should think of Sy(Z) as obtained from Z by moving it
downwards (on vertical lines), to the left (on horizontal lines), and reordering
the vertical and horizontal lines until one obtains a lower shape. Note also that,
in general, Sx(Z) is different from Sy(Z). An examples is shown in the figure.

×: the points of Z

Sy(Z) Sx(Z)
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With these, we have:

Lemma 2.1. A set of nodes Z is cartesian if and only if Sx(Z) = Sy(Z).

Proof. If Z is S-cartesian for some lower set S, we see that the operations
involved in the definition of Sy(Z) produces the lower set S, hence Sy(Z) = S
and similarly Sx(Z) = S. Hence Sx(Z) = Sy(Z). To prove the converse we use
induction on the number of elements n of Z. First of all, since each of the lines
li does contain at least one point, it follows that (i, 0) ∈ Sy(Z) for all 0 ≤ i ≤ k.
Since Sx(Z) = Sy(Z), it then follows that there is a line l, parallel to the OX axis,
which intersects each of the lines li in a point situated in Z. We then see that
Sy(Z \ l) = Sx(Z \ l), and, by the induction hypothesis, Z \ l must be cartesian.
This clearly implies that Z must be cartesian too. �

Example 2.1. Although this example is one of the simplest, it is already
very suggestive for the relation to the Lagrange problem, and can be seen as an
illustration of the role of Sx(Z) and Sy(Z) for the proof of Theorem 1.1 (next
section).

Assume that Z is made of the points (1, 0) and (0, 1) and a third (distinct) one,
(a, b), with a, b ∈ R. The computation of Sx(Z) and Sy(Z) depends on whether
a and b belong to {0, 1} or not. More precisely, from the definition we deduce
that Sy(Z) = {(0, 0), (1, 0), (2, 0)} if a /∈ {0, 1} and Sy(Z) = {(0, 0), (1, 0), (0, 1)}
if a ∈ {0, 1}, and similarly for Sx(Z). Hence there are several possibilities, and
we see that Z is cartesian if and only if the third point, namely (a, b), is either
{(1, 1)} or {(0, 0)}.

All these cases reflect in the regularity of the associated Lagrange problems.
More precisely, by analyzing the associated determinants, we see that the Lagrange
problem has unique solutions of type P (x, y) = a0,0 + a1,0x + a2,0x

2 unless
a ∈ {0, 1}, has unique solutions of type P (x, y) = a0,0 + a0,1y + a0,2y

2 unless
b ∈ {0, 1}, and has unique solutions of type P (x, y) = a0,0 + a1,0x + a0,1y unless
a + b = 1. Since the conditions

a ∈ {0, 1}, b ∈ {0, 1}, a + b = 1(2.2)

cannot be all satisfied (since (a, b) was assumed distinct from (1, 0) and (0, 1)), we
see that (Z, S) is regular for at least one lower set S. Also, if we require that this
happens for a unique lower set S, we see that two of the three conditions (2.2)
must be satisfied, and then we deduce that (a, b) must be either (1, 1) or (0, 0).
Note that these are precisely the cases for which Z is cartesian, and this is in
complete agreement with Theorem 1.1

3. Lagrange schemes and cartesian sets of nodes

In this section we study the relation between cartesian sets of nodes and the
regularity of the Birkhoff-Lagrange schemes. We will show the following, whose
particular case appearing in Lemma 3.1 below can be seen as an analogue of
Theorem 12.3.1 of [3].
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Proposition 3.1. Given two lower sets S and S0, and a S-cartesian set of
nodes Z, the following are equivalent

(i) (Z, S0) is solvable.
(ii) S ⊂ S0.

Proposition 3.2. For any set of nodes Z, both schemes (Z, Sx(Z)) and
(Z, Sy(Z)) are regular.

These immediately imply the theorem stated in the introduction (see the end
of the section). For the proof of Proposition 3.1, we will first need to establish the
particular case of rectangular sets of nodes (for the notion of rectangular shapes,
see Remark 2.1):

Lemma 3.1. Given a lower set S and a (p, q)-rectangular set of nodes Z, the
Lagrange interpolation problem for (Z, S) is solvable if and only if R(p, q) ⊂ S.

The remaining part of this section is devoted to the proof of these results.

Proof of Proposition 3.2. This follows from the univariate case. To explain this,
we choose k and ni as in the definition of Sy(Z) (see (2.1)). It follows that Z can
be written as

Z = {(xi, y
i
j) : 0 ≤ i ≤ k, 0 ≤ j ≤ ni}(3.1)

where all the xi’s are distinct, as well as all the yi
j ’s for each i. Denote by

lxi (x;x0, . . . , xp) the fundamental (univariate) interpolation polynomial at the node
xi, with respect to the Lagrange problem with the nodes x0, . . . , xp, i.e.

lxi (x;x0, . . . , xp) =
(x − x0) . . . ̂(x − xi) . . . (x − xp)

(xi − x0) . . . ̂(xi − xi) . . . (xi − xp)
,

where “â” means that a is omitted. Similarly we consider lyj (y; yi
0, . . . , y

i
ni

).
Then lx,y

i,j = lxi (x;x0, . . . , xp)l
y
j (y; yi

0, . . . , y
i
ni

) will be the fundamental interpola-
tion polynomials for the problem corresponding to the scheme (Z, Sy(Z)). The
case (Z, Sx(Z)) is obtained by interchanging the role of x and y. �

Proof of Lemma 3.1. Since (Z,R(p, q)) is regular (Proposition 3.2), we only
have to prove that solvability implies R(p, q) ⊂ S. The solvability condition en-
sures the existence of a polynomial P ∈ PS with the property that P (xi, yj) = 0
for all (i, j) ∈ R(p, q), except for P (xp, yq) = 1. We consider the polynomials
φx

0 = 1,
φx

i = (x − x0) . . . (x − xi−1)/(xi − x0) . . . (xi − xi−1),
where we extend the sequence x0, . . . , xp to an infinite sequence of distinct numbers
(the only role of this extension is to simplify the presentation. Actually, all we
need is to extend the family of linearly independent polynomials {φx

i : 0 ≤ i ≤ p}
to a basis of the polynomial ring R[x], and using such an infinite sequence is one
way of doing that). Similarly we define the polynomials φy

j in the variable y. Since
{φx

i φy
j : i, j ≥ 0} is a basis for the space of bivariate polynomials, we can write

P =
∑

i,j ai,jφ
x
i φy

j , and, since P ∈ PS , we see that (i, j) ∈ S whenever ai,j 6= 0.
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Now, since φx
i (xk) = 0 for all k < i, φx

i (xi) = 1, and similarly for the φy
j ’s, one has

the following implication:

ai,j = 0 ∀ (i, j) ∈ R(u, v) \ {(u, v)} =⇒ P (xu, yv) = au,v.

Hence, by a simple induction, we deduce that ai,j = 0 for (i, j) ∈ R(p, q) \ {p, q},
and ap,q = P (xp, yq) = 1. Since ap,q 6= 0, it follows that (p, q) ∈ S, hence
R(p, q) ⊂ S. �

Proof of Proposition 3.1. By Proposition 3.2, (Z, S) is regular, and this shows
that (ii) =⇒ (i). Assume now that (Z, S0) is solvable, and, as before, write

S = {(i, j) : 0 ≤ i ≤ k, 0 ≤ j ≤ ni},
Z = {(xi, yj) : 0 ≤ i ≤ s, 0 ≤ j ≤ ni},

with n0 ≥ . . . ≥ nk, and with the xi’s, as well as the yj ’s, distinct. We now use that
(Z0, S0) is solvable for all Z0 ⊂ Z. For any s ≤ k, we choose Z0 = Z0(s), where
Z0(s) = {xi, yj) : 0 ≤ i ≤ s, 0 ≤ j ≤ ns}. Since Z0(s) is (s, ns)-rectangular, it
follows from Lemma 3.1 that R(s, ns) ⊂ S0. Since the sets R(s, ns) with 0 ≤ s ≤ k
cover S entirely, it follows that S ⊂ S0. Hence (i) =⇒ (ii). �

Proof of Theorem 1.1. The first part is implied by Proposition 3.2. The same
proposition shows that the uniqueness of S implies that Sy(Z) = Sx(Z) hence, by
Lemma 2.1, Z must be cartesian. Finally, assume that Z is S-cartesian for some
lower set S. Then, if S0 is a lower set such that (Z, S0) is regular, on one hand we
must have |S0| = |Z|(= |S|), and, on the other hand, Proposition 3.1 implies that
S0 ⊂ S; hence S0 must coincide with S. The same proposition applied to S0 = S
implies that (Z, S) is indeed regular. �
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