ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. LXXIII, 1 (2004)
p. 31 – 41
Gateaux Differentiability for Functionals of Type Orlicz-Lorentz
H. H. Cuenya and F. E. Levis
Abstract. 
Let $(\Omega,{\mathcal A},\mu)$ be a $\sigma$-finite nonatomic
measure space and let $\Lambda_{w,\phi}$ be the Orlicz-Lorentz
space. We study the Gateaux differentiability of the functional
$\Psi_{w,\phi}(f)= \smallint\limits_{0}^{\infty} \phi(f^*)w$. More
precisely we give an exact characterization of those points in the
Orlicz-Lorentz space $\Lambda_{w,\phi}$ where the Gateaux
derivative exists. This paper extends known results already on
Lorent spaces, $L_{w,q}$, $1<q<\infty$. The case $q=1$, it has
been considered.
AMS subject classification: 
46E30; Secondary: 46B20.
Keywords: 
Gateaux derivative, Orlicz-Lorentz space.
Download:     Adobe PDF     Compressed Postscript      
Version to read:     Adobe PDF
Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295755 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
©
Copyright 2004, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE