ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. LXXI, 1(2002)
p. 113

A CLASS OF ALGEBRAIC-EXPONENTIAL CONGRUENCES MODULO $p$
C. Cobeli, M. Vajaitu and A. Zaharescu


Abstract.  Let $p$ be a prime number, $\J$ a set of consecutive integers, $\overline \FF _p$ the algebraic closure of $ \FF _p=\ZZ /p\ZZ$ and $\C$ an irreducible curve in an affine space $\AA^r(\overline \FF _p),$ defined over $ \FF _p$. We provide a lower bound for the number of $r-$tuples $(x,y_1,\dots,y_ r-1 )$ with $x \in \J,$ $y_1,\dots,y_ r-1 \in 0,1,\cdots,p-1 $ for which $(x, y_1^x,\dots,$ $y_ r-1 ^x)$ (mod $p$) belongs to $\C( \FF _p).$

AMS subject classification:  11T99
Keywords

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2002, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE