ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. LXXI, 1(2002)
p. 1

A NOTE ON UPPER BOUND FOR CHROMATIC\\ NUMBER OF A GRAPH
L. Stacho


Abstract.  Let \( G \) be a graph and let \( s \) be the maximum number of vertices of the same degree, each at least \( (\Delta (G)+2)/2 \), where \( \Delta \left( G\right) \) is the maximum degree in \( G \). We show that the chromatic number \( \chi \left( G\right) \leq \left\lceil \frac s s+1 \left( \Delta \left( G\right) +2\right) \right\rceil \).

AMS subject classification:  05C15 05C07
Keywords:  chromatic number, degree sequence, maximum degree

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2002, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE