ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. LXXI, 1(2002)
p. 1
A NOTE ON UPPER BOUND FOR CHROMATIC\\
NUMBER OF A GRAPH
L. Stacho
Abstract. 
Let \( G \) be a graph and let \( s \) be the maximum number of vertices of the same degree, each at least \( (\Delta (G)+2)/2 \), where \( \Delta \left( G\right) \) is the maximum degree in \( G \). We show that the chromatic number \( \chi \left( G\right) \leq \left\lceil \frac s s+1 \left( \Delta \left( G\right) +2\right) \right\rceil \).
AMS subject classification: 
05C15 05C07
Keywords: 
chromatic number, degree sequence, maximum degree
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
©
Copyright 2002, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE