ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. LXXI, 1(2002)
p. 19

Periodic solutions in superlinear parabolic problems
J. Huska


Abstract.  Consider the Dirichlet problem for the parabolic equation $u_t=\Delta u+m(t)g(x,u)$ in $\Omega\times(0,\infty)$ where $\Omega$ is a smoothly bounded, convex domain in $\mathbb R ^n$ and $g$ has superlinear subcritical growth in $u$. If $m$ is periodic, positive and $m,g$ satisfy some technical conditions then we prove the existence of a positive periodic solution.

AMS subject classification:  35B45, 35K60
Keywords

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2002, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE