ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. LXXI, 1(2002)
p. 35
Maximal operators, Lebesgue points and quasicontinuity in strongly nonlinear
potential theory
N. Aissaoui
Abstract. 
Many maximal functions defined on some Orlicz spaces $\mathbf L _ A $ are bounded operators on $\mathbf L _ A $ if and only if they satisfy a capacitary weak inequality. We show also that $(m,A)-$quasievery $x$ is a Lebesgue point for $f$ in $\mathbf L _ A $ sense and we give an $(m,A)-$ quasicontinuous representative for $f$ when $L_A$ is reflexive.
AMS subject classification: 
46E35 31B15
Keywords: 
Orlicz spaces, capacities, Bessel potential, maximal operators, Lebesgue
point, quasicontinuity.
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
©
Copyright 2002, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE