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PERRON CONDITIONS AND UNIFORM EXPONENTIAL
STABILITY OF LINEAR SKEW-PRODUCT SEMIFLOWS

ON LOCALLY COMPACT SPACES

M. MEGAN, A. L. SASU and B. SASU

Abstract. The aim of this paper is to give necessary and sufficient conditions for
uniform exponential stability of linear skew-product semiflows on locally compact

metric spaces with Banach fibers. Thus, there are obtained generalizations of some

theorems due to Datko, Neerven, Clark, Latushkin, Montgomery-Smith, Randolph,
van Minh, Räbiger and Schnaubelt.

1. Introduction

A well developed area in the field of differential equations is the theory of linear
skew-product flows, which arise as solution operators for variational equations

d

dt
u(t) = A(σ(θ, t))u(t),

where σ is a flow on a locally compact metric space Θ and A(θ) an unbounded
linear operator on X, for every θ ∈ Θ. In the last few years significant progress has
been made in the study of asymptotic behaviour of linear skew-product flows in
infinite dimensional spaces giving an unifield answer to an impresive list of classical
problems (see [1]–[5], [9], [20]). There has been studied the dichotomy of linear
skew-product semiflows defined on compact spaces (see [2]–[5]), and on locally
compact spaces, respectively (see [10]). An answer concerning stability of linear
skew-product semiflows, on locally compact spaces, has been done in [13], where
this property is characterized in terms of Banach function spaces, generalizing
some results contained in [11] and [12]. In [10], dichotomy of strongly continuous
linear skew-product flows was expressed in terms of hyperbolicity of a family of
weighted shift operators and thus it was extended the classical theorem of Perron,
which connects dichotomy to the existence and uniqueness of bounded, continuous
mild solutions of an inhomogeneous equation.

The purpose of this paper is to answer questions concernig uniform exponen-
tial stability of linear skew-product semiflows on locally compact metric spaces.
Therefore we consider a concept of exponential stability for linear skew-product
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semiflows, which is an extension of the classical concept of exponential stability
for time-dependent linear differential equations in Banach spaces (see, e.g. [7], [8],
[18]). Thus we give theorems of characterization for uniform exponential stability
of linear skew-product semiflows in terms of boundedness of a family of linear
operators acting on C0(R+, X) and Lp(R+, X), respectively. We obtain that the
uniform exponential stability of a linear skew-product semiflow π = (Φ, σ) on
E = X × Θ is equivalent to uniform (C0(R+, X), Cb(R+, X)) — stability of a
certain family of linear operators, associated to π. It is proved that the property
of uniform (Lp(R+, X), Lq(R+, X)) — stability of the associated family, is a suf-
ficient condition for the uniform exponential stability of π and it is also necessary
for p ≤ q. An example shows that this result fails for p > q. We obtain here
theorems of Perron type, which generalise some theorems contained in [6], [8],
[15], [16], [17].

2. Linear Skew-Product Semiflows

Let X be a fixed Banach space — the state space — let Θ = (Θ, d) be a locally
compact metric space and let E = X ×Θ . We shall denote by B(X) the Banach
algebra of all bounded linear operators from X into itself.

Definition 2.1. A mapping σ : Θ×R+ → Θ is called a semiflow on Θ, if it
has the following properties:

(i) σ(θ, 0) = θ, for all θ ∈ Θ;
(ii) σ(θ, s+ t) = σ(σ(θ, s), t), for all (θ, s, t) ∈ Θ×R2

+;
(iii) σ is continuous.

Definition 2.2. A pair π = (Φ, σ) is called a linear skew-product semiflow
on E = X × Θ if σ is a semiflow on Θ and Φ: Θ × R+ → B(X) satisfies the
following conditions:

(i) Φ(θ, 0) = I, the identity operator on X, for all θ ∈ Θ;
(ii) Φ(θ, t + s) = Φ(σ(θ, t), s)Φ(θ, t), for all (θ, t, s) ∈ Θ × R2

+ (the cocycle
identity);

(iii) t 7→ Φ(θ, t)x is continuous for all (θ, x) ∈ Θ×X;
(iv) there are M ≥ 1 and ω > 0 such that

(2.1) ||Φ(θ, t)|| ≤Meωt,

for all (θ, t) ∈ Θ×R+.

Remark 2.1. If π = (Φ, σ) is a linear skew-product semiflow on E = X × Θ
then for every β ∈ R the pair πβ = (Φβ , σ), where Φβ(θ, t) = e−βt Φ(θ, t) for all
(θ, t) ∈ Θ×R+, is also a linear skew-product semiflow on E = X ×Θ.

Example 2.1. Let Θ be a locally compact metric space, let σ be a semiflow on
Θ and let T = {T (t)}t≥0 be a C0 – semigroup on X. Then the pair πT = (ΦT , σ),
where

ΦT (θ, t) = T (t),
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for all (θ, t) ∈ Θ×R+, is a linear skew-product semiflow on E = X ×Θ, which is
called the linear skew-product semiflow generated by the C0 – semigroup
T and the semiflow σ.

Example 2.2. Let Θ = R+, σ(θ, t) = θ + t and let U = {U(t, s)}t≥s≥0 be an
evolution operator on the Banach space X. We define

Φ(θ, t) = U(t+ θ, θ),

for all (θ, t) ∈ R2
+. Then π = (Φ, σ) is a linear skew-product semiflow on E =

X×Θ called the linear skew-product semiflow generated by the evolution
operator U and the semiflow σ.

Example 2.3. Let Θ be a compact metric space and let σ : Θ×R+ → Θ be a
semiflow on Θ. Let A : Θ→ B(X) be a continuous mapping, where X is a Banach
space. Let Φ(θ, t) be the solution of the linear differential system

u̇(t) = A(σ(θ, t))u(t), t ≥ 0.

Then the pair π = (Φ, σ) is a linear skew-product semiflow on E = X ×Θ.

These equations arise from the linearization of nonlinear equations (see [20] and
the references therein).

Example 2.4. Let X be a Banach space and let Y := C(R+,R) be the space
of all continuous functions with the topology of uniform convergence on compact
subsets on R+. This space is metrizable with the metric

d(x, y) =
∞∑
n=1

1
2n

dn(x, y)
1 + dn(x, y)

,

where dn(x, y) = sup
t∈[0,n]

|x(t)− y(t)|.

On the Banach space X, we consider the nonautonomous differential equation

ẋ(t) = a(t)x(t), t ≥ 0

where a : R+ → R+ is an uniformly continuous function such that there exists
α := lim

t→∞
a(t) <∞.

If we denote by as(t) = a(t+ s) and by Θ = closure {as : s ∈ R+}, then

σ : Θ×R+ → Θ, σ(θ, t)(s) := θ(t+ s),

is a semiflow on Θ. For

Φ: Θ×R+ → B(X), Φ(θ, t)x = exp
(∫ t

0

θ(τ) dτ
)
x,

we have that π = (Φ, σ) is a linear skew-product semiflow on E = X ×Θ.

Definition 2.3. A linear skew-product semiflow π = (Φ, σ) on E = X × Θ is
said uniformly exponentially stable if there are N ≥ 1 and ν > 0 such that

||Φ(θ, t)|| ≤ Ne−νt,
for all (θ, t) ∈ Θ×R+.
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Example 2.5. Let β ∈ R+. Consider the linear skew-product semiflow πβ =
(Φβ , σ), where

Φβ(θ, t) = e−βt Φ(θ, t),
and π = (Φ, σ) is the linear skew-product semiflow given in Example 2.4.

It is easy to see that for β > α, πβ is uniformly exponentially stable and for
β ∈ [0, α] and θ0(τ) = α, for all τ ≥ 0 we have

||Φβ(θ0, t)x|| =

{
||x||, if β = α

eα−β ||x||, if β < α,

so πβ is not uniformly exponentially stable.

Proposition 2.1. Let π = (Φ, σ) be a linear skew-product semiflow on E =
X ×Θ. If there are t0 > 0 and c ∈ (0, 1) such that

||Φ(θ, t0)|| ≤ c,

for all θ ∈ Θ, then π is uniformly exponentially stable.

Proof. Let M ≥ 1 and ω > 0 given by (2.1). Let ν be a positive number such
that c = e−νt0 .

Let θ ∈ Θ be fixed. For t ∈ R+ there are n ∈ N and r ∈ [0, t0) such that
t = nt0 + r. Then

||Φ(θ, t)|| ≤ ||Φ(σ(θ, nt0), r)|| ||Φ(θ, nt0)|| ≤M eωt0 e−nνt0 ≤ N e−νt,

where N = Me(ω+ν)t0 . So, π is uniformly exponentially stable. �

Let Cb(R+, X) be the linear space of all bounded continous functions u : R+ →
X and

C0(R+, X) = {u ∈ Cb(R+, X) : u(0) = lim
t→∞

u(t) = 0}.

Endowed with the sup-norm:

|||u||| := sup
t≥0
||u(t)||,

C0(R+, X) and Cb(R+, X) are Banach spaces.

We denote by F the linear space of all Bochner measurable functions u : R+ →
X identifying the functions which are equal almost everywhere. For every p ∈
[1,∞) the linear space

Lp(R+, X) = {u ∈ F :
∫ ∞

0

||u(t)||p dt <∞}

is a Banach space with respect to the norm:

||u||p :=
(∫ ∞

0

||u(t)||p dt
)1/p

.

Throughout the paper, we shall denote by L1
loc(R+, X) the set of all locally

integrable functions u : R+ → X.
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Definition 2.4. A subspace E of Cb(R+, X) is said to be boundedly locally
dense in Cb(R+, X) if there exists c > 0 such that

(i) for every T > 0 and every u ∈ Cb(R+, X) there exists a sequence (un) ⊂ E
with un → u almost everywhere on [0, T ];

(ii) |||un||| ≤ c |||u|||, for all n ∈ N.

Remark 2.2. (i) It is easy to see that Cc(R+, X) – the space of all X – valued,
continuous functions on R+ with compact support is an example of boundedly
locally dense subspace of Cb(R+, X).

(ii) Let BUC(R+, X) be the space of all X – valued, bounded, uniformly contin-
uous functions on R+ and AP (R+, X) – the closure in BUC(R+, X) of the linear
span of the functions {eiλ(·)x : λ ∈ R, x ∈ X} (see [17]). Then BUC(R+, X) and
AP (R+, X) are two remarkable examples of boundedly locally dense subspaces of
Cb(R+, X).

Definition 2.5. Let p ∈ [1,∞). A subspace E of Lp(R+, X) is said to be
boundedly locally dense in Lp(R+, X) if there exists c > 0 such that

(i) for every T > 0 and every u ∈ Lp(R+, X) there exists a sequence (un) ⊂ E
with un → u in Lp([0, T ], X);

(ii) ||un||p ≤ c ||u||p, for all n ∈ N.

Remark 2.3. S(R+, X) — the space of all measurable simple functions s 7→
R+ → X and Cc(R+, X) are boundedly locally dense subspaces of Lp(R+, X),
for every p ∈ [1,∞).

If π = (Φ, σ) is linear skew-product semiflow on E = X×Θ then for every θ ∈ Θ
we define

Pθ : L1
loc(R+, X)→ L1

loc(R+, X), (Pθu)(t) :=
∫ t

0

Φ(σ(θ, τ), t− τ)u(τ) dτ.

Definition 2.6. Let U, Y ∈ {C0(R+, X), Cb(R+, X)} ∪ {Lp(R+, X),
p ∈ [1,∞)} and let π = (Φ, σ) be a linear skew-product semiflow on E = X × Θ.
We say that the family {Pθ}θ∈Θ is uniformly (U, Y )-stable if for every u ∈ U
and every θ ∈ ΘPθu belongs to Y and there is K > 0 such that

||Pθu||Y ≤ K||u||U ,
for all (u, θ) ∈ U ×Θ.

Proposition 2.2. Let π = (Φ, σ) be an uniformly exponentially stable linear
skew-product semiflow on E = X×Θ and p, q ∈ [1,∞) with p ≤ q. Then the family
{Pθ}θ∈Θ is uniformly (Lp(R+, X), Lq(R+, X))-stable.

Proof. It follows using Hölder’s inequality and the cocycle identity. �

3. The Main Results

We shall start with a generalization of a theorem of characterization of exponential
stablity of evolution operators in Banach spaces (see [5, Theorem 2.2]) at the case
of linear skew-product semiflows.
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Theorem 3.1. Let π = (Φ, σ) be a linear skew-product semiflow on E = X×Θ.
Then the following assertions are equivalent:

(i) π is uniformly exponentially stable;
(ii) the family {Pθ}θ∈Θ is uniformly (C0(R+, X), C0(R+, X))-stable;
(iii) the family {Pθ}θ∈Θ is uniformly (C0(R+, X), Cb(R+, X))-stable.

Proof. The implication (i)⇒ (ii) is a simple exercise and (ii)⇒ (iii) is obvious.
Suppose that (iii) holds and hence there is K > 0 such that

(3.1) |||Pθu||| ≤ K |||u|||,
for all (u, θ) ∈ C0(R+, X)×Θ.

Consider M ≥ 1 and ω > 0 given by (2.1).
Let θ ∈ Θ and x ∈ X. If α : R+ → [0, 2] is a continuous function with the

support contained in (0, 1) and with the property that∫ 1

0

α(s) ds = 1,

then we consider the function

u : R+ → X, u(t) = α(t)Φ(θ, t)x.

Hence u ∈ C0(R+, X) and

|||u||| = sup
t∈[0,1]

||u(t)|| ≤ 2Meω||x||.

For t ≥ 1, we observe that

(Pθu)(t) =
∫ t

0

α(s) Φ(σ(θ, s), t− s)Φ(θ, s)x ds = Φ(θ, t)x.

Then using (3.1) we obtain

(3.2) ||Φ(θ, t)x|| ≤ |||Pθu||| ≤ 2KMeω||x||.
But, for t ∈ [0, 1] we have

(3.3) ||Φ(θ, t)|| ≤Meω,

so, denoting by L = (2K + 1)Meω and using relations (3.2) and (3.3), it follows
that

||Φ(θ, t)|| ≤ L,
for all (θ, t) ∈ Θ×R+.

Consider ν = e/4LK and

ϕ : R+ → R+, ϕ(t) =
∫ t

0

se−νs ds.

The function ϕ is strictly increasing on R+ with

lim
t→∞

ϕ(t) =
1
ν2
,

so, we can choose δ > 0 such that ϕ(δ) > 1/2ν2.
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Let θ ∈ Θ and x ∈ X. Define the function

v : R+ → X, v(t) = te−νtΦ(θ, t)x.

Then v ∈ C0(R+, X) and

|||v||| ≤ L||x|| sup
t≥0

te−νt =
L

νe
||x||.

We observe that
(Pθv)(δ) = ϕ(δ)Φ(θ, δ)x,

and hence it follows that

||Φ(θ, δ)x|| < 2ν2ϕ(δ)||Φ(θ, δ)x||

≤ 2ν2 |||Pθv||| ≤ 2ν
LK

e
||x|| = 1

2
||x||.

It results that

||Φ(θ, δ)|| ≤ 1
2
,

for all θ ∈ Θ. From Proposition 2.1. we obtain that π is uniformly exponentially
stable. �

Corollary 3.1. Let π = (Φ, σ) be a linear skew-product semiflow on E = X×Θ
and let E be a boundedly locally dense subspace of Cb(R+, X). If for every u ∈ E
and every θ ∈ ΘPθu belongs to Cb(R+, X) and there exists L > 0 such that

|||Pθu||| ≤ L|||u|||,

for all (u, θ) ∈ E ×Θ, then π is uniformly exponentially stable.

Proof. Let u ∈ C0(R+, X), T > 0. There is a sequence (un) ⊂ E with un → u
almost everywhere on [0, T ] and

|||un||| ≤ c |||u|||,

for all n ∈ N, where c > 0 is given by Definition 2.4.
Let θ ∈ Θ be fixed. From Lebesgue’s theorem we have that

(Pθun)(T )→ (Pθu)(T ), as n→∞.

Because
||(Pθun)(T )|| ≤ |||Pθun||| ≤ L|||un||| ≤ cL|||u|||,

as n→∞ the relation from above gives

(3.4) ||(Pθu)(T )|| ≤ cL|||u|||.

Since T > 0 was arbitrary chosen it follows that Pθu ∈ Cb(R+, X). Moreover
(3.4) holds for every u ∈ C0(R+, X) and every θ ∈ Θ, so the family {Pθ}θ∈Θ is
uniformly (C0(R+, X), Cb(R+, X))-stable. By applying Theorem 3.1, it follows
that π is uniformly exponentially stable. �
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Remark 3.1. Neerven proved that a C0 — semigroup T = {T (t)}t≥0 is uni-
formly exponentially stable if and only if convolution with T maps certain sub-
spaces of BUC(R+, X) into Cb(R+, X). Thus, he obtained characterizations for
uniform exponential stablity of C0 — semigroups, in terms of almost periodic
functions (see [17, p. 90-94]). So, Corollary 3.1. is a generalization of Neerven’s
result, for the case of linear skew-product semiflows.

In the theory of stability of evolution operators in Banach spaces a well-known
result says that an evolution operator U = {U(t, s)}t≥s≥0 is exponentially stable
if and only if for every f ∈ Lp(R+, X) the mapping Pf , where

Pf (t) =
∫ t

0

U(t, s)f(s) ds,

for all t ≥ 0, belongs to Lp(R+, X) (see e.g. [6, Theorem 2.5]). As a sufficient
condition for exponential stability, this theorem was also treated in [8].

In what follows, we shall generalize this result for the case of linear skew-product
semiflows on locally compact metric spaces.

Theorem 3.2. Let π = (Φ, σ) be a linear skew-product semiflow on E = X×Θ
and p, q ∈ [1,∞). If the family {Pθ}θ∈Θ is uniformly (Lp(R+, X), Lq(R+, X))-
stable then π is uniformly exponentially stable.

Proof. Let K > 0 given by Definition 2.6 and M ≥ 1, ω > 0 given by (2.1).
Let θ ∈ Θ and x ∈ X. Let α : R+ → [0, 2] be a continuous function with the

support contained in (0, 1) and ∫ 1

0

α(s) ds = 1.

We consider the function

u : R+ → X, u(t) = α(t)Φ(θ, t)x.

Then u ∈ Lp(R+, X) and

||u||p =
(∫ 1

0

α(s)p||Φ(θ, s)x||p ds
) 1
p

≤ 2Meω||x||.

Moreover we obtain

(3.5) Pθu(t) = Φ(θ, t)x,

for all t ≥ 1.
Since, for every θ ∈ Θ, x ∈ X and t ≥ 1 we have

(3.6) ||Φ(θ, t)x|| ≤Meω
(∫ t

t−1

||Φ(θ, τ)x||q dτ
) 1
q

,
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from (3.5) and (3.6), we deduce that

||Φ(θ, t)x|| ≤Meω
(∫ t

t−1

||(Pθu)(τ)||q dτ
) 1
q

≤Meω||Pθu||q ≤MKeω||u||p ≤ 2M2Ke2ω||x||,

for every t ≥ 2. Because for t ∈ [0, 2] we have

||Φ(θ, t)x|| ≤Me2ω||x||,

denoting by L = Me2ω(2MK + 1), we finally conclude that

(3.7) ||Φ(θ, t)|| ≤ L,

for all (θ, t) ∈ Θ×R+.
Let

ϕ : R+ → R+, ϕ(t) =
∫ t

0

se−s ds.

Then, ϕ is a strictly increasing function, with lim
t→∞

ϕ(t) = 1. Let c > 0 such that

(3.8) ϕ(t) >
1
2
,

for all t ≥ c.
Let θ ∈ Θ and x ∈ X. We consider the function

v : R+ → X, v(t) = te−tΦ(θ, t)x.

Then v ∈ Lp(R+, X) and

||v||p =
(∫ ∞

0

spe−sp||Φ(θ, s)x||p ds
) 1
p

≤ L1||x||,

where L1 = L(
∫∞

0
spe−sp ds)1/p. But

(Pθv)(t) = ϕ(t) Φ(θ, t)x,

for all t ≥ 0. For t > c and τ ∈ [c, t] using (3.7) and (3.8) we obtain that

1
2
||Φ(θ, t)x|| ≤ Lϕ(τ)||Φ(θ, τ)x||.

Hence, we deduce that

(t− c)1/q

2
||Φ(θ, t)x|| ≤ L(

∫ t

c

||(Pθv)(τ)||q dτ)
1
q

≤ L ||Pθv||q ≤ KL ||v||p ≤ KLL1 ||x||.

Let t0 > 0 with (t0 − c)1/p > 4KLL1. Then

||Φ(θ, t0)|| ≤ 1
2
,

for all θ ∈ Θ. From Proposition 2.1. we conclude that π is uniformly exponentially
stable. �
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In certain situations, the sufficient condition for uniform exponential stability
of a linear skew-product semiflow, given by Theorem 3.2, becomes necessary, too,
as shows

Corollary 3.2. Let π = (Φ, σ) be a linear skew-product semiflow on E = X×Θ
and p, q ∈ [1,∞) with p ≤ q. Then π is uniformly exponentially stable if and only
if the family {Pθ}θ∈Θ is uniformly (Lp(R+, X), Lq(R+, X))-stable.

Proof. It follows from Proposition 2.2 and Theorem 3.2. �

Remark 3.2. Generally, if π = (Φ, σ) is an uniformly exponentially stable
linear skew-product semiflow on E = X ×Θ and p, q ∈ [1,∞), with p > q, it does
not result that the family {Pθ}θ∈Θ is uniformly (Lp(R+, X), Lq(R+, X))-stable.
This fact is illustrated by the following example.

Example 3.1. Let X = Θ = R and σ(θ, t) = θ + t. If

Φ(θ, t)x = e−tx,

for all t ≥ 0, x, θ ∈ R, then π = (Φ, σ) is a linear skew-product semiflow on
E = X ×Θ which is uniformly exponentially stable.

If p, q ∈ [1,∞), with p > q, let δ ∈ (q, p). We consider the function

u : R+ → R, u(t) =
1

(t+ 1)1/δ
.

We have that u ∈ Lp(R+,R) \ Lq(R+,R).
Let θ ∈ Θ. We observe that

(Pθu)(t) = e−t
∫ t

0

esu(s) ds,

for all t ≥ 0. Because

lim
t→∞

(Pθu)(t)
u(t)

= lim
t→∞

etu(t)
etu(t)− 1

δ(t+1)e
tu(t)

= 1

and u /∈ Lq(R+,R), we obtain that Pθu /∈ Lq(R+,R) and hence the family
{Pθ}θ∈Θ is not uniformly (Lp(R+,R), Lq(R+,R))-stable.

Corollary 3.3. Let π = (Φ, σ) be a linear skew-product semiflow on E = X×Θ,
p, q ∈ [1,∞) and let E be a boundedly locally dense subspace of Lp(R+, X). If for
every u ∈ E and every θ ∈ Θ, Pθu belongs to Lq(R+, X) and there exists L > 0
such that

||Pθu||q ≤ L||u||p,
for all (u, θ) ∈ E ×Θ, then π is uniformly exponentially stable.

Proof. Let M ≥ 1 and ω > 0 given by (2.1). Let θ ∈ Θ, u ∈ Lp(R+, X) and
T > 0. Then there exist c > 0 and a sequence (un) ⊂ E such that un → u in
Lp([0, T ], X) and

||un||p ≤ c||u||p,
for all n ∈ N.
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For t ∈ [0, T ] we have that

||(Pθun)(t)− (Pθu)(t)|| ≤MeωT
∫ T

0

||un(s)− u(s)|| ds

≤MeωT δ(
∫ T

0

||un(s)− u(s)||p ds)
1
p ,

where

δ =

{
1, p = 1
T 1/q, p ∈ (1,∞) and q = p

p−1

,

so,
(Pθun)(t)→ (Pθu)(t), as n→∞.

But

||(Pθun)(t)|| ≤MeωT
∫ T

0

||un(s)|| ds ≤MeωT δ||un||p

≤MeωT δ c ||u||p,

for all t ∈ [0, T ], n ∈ N. From Lebesgue’s theorem, we obtain that

(3.9)
∫ T

0

||Pθun(t)||q dt→
∫ T

0

||(Pθu)(t)||q dt as n→∞.

Moreover, for every n ∈ N

(3.10)
∫ T

0

||(Pθun)(t)||q dt ≤ ||Pθun||qq ≤ Lq||un||qp ≤ cqLq||u||qp.

For n→∞ in (3.10) and using (3.9) we deduce that∫ T

0

||(Pθu)(t)||q dt ≤ cqLq||u||qp.

Since T > 0 was arbitrary chosen, it follows that Pθu ∈ Lq(R+, X) and

||Pθu||q ≤ cL||u||p,
for all (u, θ) ∈ Lp(R+, X) × Θ. It follows that the family {Pθ}θ∈Θ is uniformly
(Lp(R+, X), Lq(R+, X)-stable, so from Theorem 3.2 we conclude that π is uni-
formly exponentially stable. �
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