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NAMBU-LIE GROUP ACTIONS

N. CICCOLI

Abstract. The purpose of this work is to describe the action of Nambu-Lie groups
on Nambu spaces and to identify Nambu quotients. In this process we introduce
a notion of dual Lie group of a Nambu-Lie group and as an example we generalize

dressing actions.

1. Introduction

In last years much interest has been drawn by manifold supporting an n-ary op-
eration on their function algebra which generalizes Poisson brackets. The first
example of a ternary bracket on a linear space was introduced by Y. Nambu,
in 1973 ([11]), to discuss some properties of integrable Hamiltonian dynamical
systems. Recently Takhtajan, in [12], proposed a general algebraic definition of
Nambu-Poisson brackets of order n. A vector space is a Nambu algebra (Nambu-
Takhtajan in some authors) of rank n if it is endowed with an n-linear completely
antisymmetric bracket {. . . } such that:

{f1, . . . , fn−1, g1g2} = {f1, . . . , fn−1, g1}g2 + g1{f1, . . . , fn−1, g2}(1.1)

{f1, . . . , fn−1, {g1, . . . , gn}} =
n∑
i=1

{g1, . . . , {f1, . . . , fn−1, gi}, . . . , gn}(1.2)

When the algebra of smooth functions on a manifold can be given a Nambu alge-
bra structure the manifold itself is called a Nambu manifold. Such manifolds share
many properties with the more studied Poisson manifolds. For example they sup-
port a canonically defined (non regular) foliation, composed of 0 and n-dimensional
leaves, where n is the rank of the Nambu structure. On higher dimensional leaves
the Nambu tensor (i.e. the n-vector Λ such that {f1, . . . , fn} = Λ(df1, . . . , dfn)
defines a volume form ([10]). Volume manifolds (i.e. manifolds with a fixed vol-
ume form) can then be thought as the analogue, in this context, of symplectic
manifolds. Despite these similarities, when n > 2 Nambu structures appear to be
much more rigid than Poisson ones. Such rigidity can be considered related to the
decomposability of every Nambu n-vector of rank greater than 2 (conjectured by
Takhtajan and proven in [1]). In such context the study of Nambu tensors on Lie
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groups which satisfies reasonable invariance conditions arises quite naturally. Not
much literature is available for Nambu-Lie groups of rank greater than 2, much
more so if compared with the great amount of papers on Poisson-Lie groups. A
review of the main results is [13]. Here we would like to show how a relevant
part of the theory of Poisson-homogeneous spaces admits a generalization to the
Nambu setting. We will show how a suitable analogue of the concept of coisotropic
subgroup can be used to reduce Nambu structures and prove that all non regular
Nambu-homogeneous spaces can be obtained this way (see [2] for the (n = 2)-
case). We will also briefly deal with the problem of defining a dual group of a
Nambu-Lie group, as in the Poisson case, propose a definition and show how it
enters in the theory of Nambu actions providing local dressing fields. We propose
to pursue this study further on and more work is at present going on in this direc-
tion. The author would like to acknowledge Dr. L. Guerra for useful conversations
on the subject. He is also grateful to R. Ibanez for pointing out an error in an
earlier version of the paper.

2. Nambu-Lie Groups

Let us recall the definition of Nambu-Lie group ([13]).

Definition 2.1. A Lie group G with a rank n Nambu tensor P is said to be a
Nambu-Lie group if the tensor P is G-multiplicative:

P (g1g2) = lg1,∗P (g2) + rg2,∗P (g1) ,

where lg1,∗ and rg2,∗ respectively denote the extension to the space of n-tensors of
the derivatives of the left and right translation operators.

We will denote with ]P : Ωn−1(G)→ X(G) the linear map defined as:

]P (α1 ∧ · · · ∧ αn−1)yβ = P (α1 ∧ · · · ∧ αn−1 ∧ β) .

More details about general properties of Nambu manifolds can be found in [10].
In the context of Nambu geometry an analogue of Lie algebras is given as follows:

Definition 2.2. Let V be a vector space together with a linear antisymmetric
n-bracket

V n 3 (f1, . . . , fn) 7→ [f1, . . . , fn] ∈ V .

If such bracket verifies the identity

[f1, . . . , fn−1, [g1, . . . , gn]] =
n∑
i=1

[g1, . . . , [f1 . . . , fn−1, gi], . . . , gn](2.3)

for every g1, . . . , gn, f1, . . . , fn−1 ∈ V then (V, [., ., .]) is called a Filippov algebra.

More on the algebraic properties of n-brackets can be found in [4] and [5].
Between Filippov algebras and Nambu-Lie groups one can establish the follow-

ing relevant connection.
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Proposition 2.3 ([6]). Let (G,P ) be a Nambu-Lie group and let δP : g→ ∧ng
denote the intrinsic derivative δP (X) = LX(P )(e). The map δ∗P : ∧n g∗ → g∗

defines a Filippov bracket on g∗. If α1, . . . , αn are in g∗ and αl1, . . . , α
l
n denote

the corresponding left invariant differential 1-forms on G then

[α1, . . . , αn] = {αl1, . . . , αln}(e)
where in the left hand side we have the n-bracket between differential 1-form defined
by P (see [13]).

We will refer to a pair (g, δ) such that g is a Lie algebra and δ∗ is a Filippov
bracket on the dual as a Filippov-Lie bialgebra.

The n-bracket between differential 1-forms can also be used to verify if a given
Nambu tensor on G is multiplicative. If, in fact, G is a connected Lie group and
P a Nambu tensor on G such that P (e) = 0 then (G,P ) is a Nambu-Lie group if
and only if for every α1, . . . , αn ∈ Ω1

inv(G) we have

{α1, . . . , αn} ∈ Ω1
inv(G) .(2.4)

The map δP appearing in proposition 2.3 belongs to the space of 1-cocycles of
the Lie algebra g with values in ∧ng with respect to the usual ad(n) action, i.e.
it verifies ad(n)

X (δP (Y )) − ad(n)
Y (δP (X)) = δP ([X,Y ]). The cocycle condition can

also be restated as follows: for every X, Y ∈ g and for every α1, . . . , αn ∈ g∗

〈[α1, . . . , αn], [X,Y ]〉 =
n∑
k=1

〈[α1, . . . , ad
∗
Y αk, . . . , αn], X〉(2.5)

− 〈[α1, . . . , ad
∗
Xαk, . . . , αn], Y 〉 .

There are two interesting kind of subgroups of a Nambu-Lie group.

Definition 2.4. A subgroup H of a Nambu-Lie group (G,P ) is called a Nambu
subgroup if the immersion ofH inG is a Nambu-map, i.e. if P

∣∣
H

defines a n-Nambu
vector on H. A subgroup H of a Nambu-Lie group (G,P ) is said to be coisotropic
if for every n functions f1, . . . , fn ∈ C∞(G) such that fi

∣∣
H

= 0, and for every
i = 1, . . . , n

{f1, . . . , fn}
∣∣
H

= P (df1, . . . , dfn)
∣∣
H

= 0 .(2.6)

As an example of Nambu-Lie subgroup we can consider the set G0 of all those
points in which the Nambu tensor is zero.

There exists a more general notion of coisotropic submanifold of a Nambu-Lie
manifold introduced in [8]: if N is a submanifold of the Nambu manifold (M,P )
and we let

Annj(TxN) =
{
α ∈ Ωn−1(T ∗xM)

∣∣ (v1 ∧ · · · ∧ vj)yα = 0, ∀v1, . . . , vj ∈ TxN
}

we will say that N is j-coisotropic in M if:

]P (Annj(TxN)) ⊆ TxN .(2.7)

In particular we can say that Nambu subgroups are 1-coisotropic submanifolds
and coisotropic Nambu subgroups are (n− 1)-coisotropic submanifolds.
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If the subgroup H is connected we can detect its properties at the infinitesimal
level; it is a Nambu-Lie subgroup iff its Lie algebra h is a Nambu-Lie subalgebra,
or, in other words, its annihilator h0 is a Filippov ideal in g∗.

Proposition 2.5. Let (G,P ) be a Nambu-Lie group of rank n and let H be a
connected subgroup of G with Lie algebra h. The following are equivalent:

1. H is coisotropic;
2. α1, . . . , αn ∈ h0 ⇒ [α1, . . . , αn] ∈ h0, that is to say h0 is a Filippov subal-

gebra of (g∗, [., . . . , .]);
3. δP (h) ⊆ h ∧ (

∧n−1
g);

4. for every 1 ≤ j ≤ n and for every x ∈ H, ]P (AnnjTxH) ⊆ TxH
Proof. Let H be coisotropic and connected; α ∈ h0 if and only if α = def where

f ∈ C∞(G), f
∣∣
H

= 0. It is then clear that

{f1, . . . , fn}
∣∣
H

= 0 ⇐⇒ [α1, . . . , αn] ∈ h0

⇐⇒ 〈[α1, . . . , αn], X〉 = 0 ∀X ∈ h
⇐⇒ 〈α1 ∧ . . . ∧ αn, δP (X)〉 = 0 ∀X ∈ h

⇐⇒ δ(X) ∈ (α1 ∧ . . . ∧ αn)0 ∀X ∈ h

from which all claimed equivalences follow. �

Examples. 1. Let us remark that every subgroup such that dim h0 < rankP
is coisotropic. In particular all subgroups of Nambu-Lie group of maximal rank
are coisotropic.

2. Another relevant example of coisotropic subgroup of a given Nambu-Lie
group is its core subgroup. If we let p be equal to the core ideal of g ([13]) a
simple case-by-case analysis proves that p verifies the third condition of Proposi-
tion 2.5.

The connections which the more general j-coisotropic subgroups, which we will
not use in the following, can be easily proven.

Proposition 2.6. Let H be a closed connected subgroup of a Nambu-Lie group
(G,P ). The following are equivalent:

1. H is j-coisotropic;
2. for every α1, . . . , αn−j+1 ∈ h0 e β1, . . . , βj−1 ∈ g∗

[α1, . . . , αn−j+1, β1, . . . , βj−1] ∈ h0 .

Proof. Using translation operators to identify tangent spaces in different points
to the identity tangent space one has:

Annj(TxH) ' (∧n−jh0)
∧

(∧j−1g∗) .

With such identification the conditions

]P
(
(∧n−jh0)

∧
(∧j−1g∗)

)
⊆ h

and
α1, . . . , αn−j+1 ∈ h0 ⇒ [α1, . . . , αn−j+1, β1, . . . , βj−1] ∈ h0

for every β1, . . . , βj−1 ∈ g∗, are dual of each other. �
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Remark. As in the Poisson case ([2]) the correspondence between subgroups
and homogeneous spaces breaks down due to the fact that every subgroup conju-
gated to a connected Nambu subgroup of a Nambu-Lie group is no longer Nambu.

3. The Dual of a Nambu-Lie Group

The purpose of this section is to construct for any given Nambu-Lie group a Lie
algebra structure generalizing the usual dual Lie algebra for Poisson-Lie groups.
Unfortunately the theory seems less meaningful than in the Poisson case. Never-
theless, as we will see, dual Lie algebras of a Nambu-Lie group will play a role in
analyzing actions of Nambu-Lie groups.

Definition 3.1. Given a Nambu-Lie group (G,P ) with associated Filippov-Lie
bialgebra (g∗, δ∗) we define the following bracket in ∧n−1g∗:

[[η1 ∧ . . . ηn−1, ξ1 ∧ . . . ∧ ξn−1]] =
n−1∑
j=1

ξ1 ∧ . . . [η1, . . . , ηn−1, ξj ] ∧ . . . ξn−1 .(3.8)

Proposition 3.2. With the bracket [[, ]] just defined ∧n−1g∗ is a (left) Leibniz
algebra.

Proof. We will prove that

[[η(n−1), [[ξ(n−1), χ(n−1)]] ]](3.9)

− [[ [[η(n−1), ξ(n−1)]], χ(n−1)]]− [[ξ(n−1), [[η(n−1), χ(n−1)]] ]] = 0.

We compute separately the three summands of (3.9), call them a, b, c in what
follows.

a =
n−1∑
j>i=1

χ1 ∧ . . . [η(n−1), χj ] . . . [ξ(n−1), χi] . . . ∧ χn−1

+
n−1∑
i=1

χ1 ∧ . . . [η(n−1), [ξ(n−1), χi]] . . . ∧ χn−1

+
n−1∑
i>j=1

χ1 ∧ . . . [ξ(n−1), χi] . . . [η(n−1), χj ] . . . ∧ χn−1

b =
n−1∑
i=1

χ1 ∧ . . . [[[η(n−1), ξ(n−1)]], χj ] . . . ∧ χn−1
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c =
n−1∑
j>i=1

χ1 ∧ . . . [ξ(n−1), χj ] . . . [η(n−1), χi] . . . ∧ χn−1

+
n−1∑
i=1

χ1 ∧ . . . [ξ(n−1), [η(n−1), χi]] . . . ∧ χn−1

+
n−1∑
i>j=1

χ1 ∧ . . . [η(n−1), χi] . . . [ξ(n−1), χj ] . . . ∧ χn−1.

The first and third term of a cancel respectively with the third and first term of c.
For the remaining summands the fundamental identity (2.3) is enough to prove
the claim. �

This bracket is not, in general, antisymmetric as the following example proves:
let (G,P ) be the generalized Nambu-Heisenberg group H(1, p) as defined in [13],
p ≥ 2. Then left invariant 1-forms on the group are spanned by

dx1, . . . , dxp, dy, dz1 − x1dy, . . . , dzp − xpdy
and the Nambu tensor is

P = y
∂

∂x1
∧ ∂

∂z1
∧ ∂

∂y
.

A direct computation allows to prove that

[[dy ∧ (dz1 − x1dy), dx1 ∧ dx2]] = dx2 ∧ dy
[[dx1 ∧ dx2, dy ∧ (dz1 − x1dy)]] = 0

so that the bracket [[, ]] is not antisymmetric. On the other hand we remark that
∧2Lie(H(1, 1))∗ is a Lie algebra.

The following standard construction (see [9]) allows to construct a Lie algebra
from any Leibniz algebra: consider the subspace

kn = {[[ξ, ξ]]
∣∣ ξ ∈ ∧n−1g∗}

then ∧n−1g∗/kn is a Lie algebra. It will be called the Nambu-Lie dual of g.
We will call (∧n−1g∗/kn, [[, ]]) the tangent Lie dual of the given Nambu-Lie group.

The connected simply-connected group G∗ integrating such Lie algebra will be
called the dual group. Let us remark that when n = 2 we obtain the usual
Poisson-Lie duals. This is slightly different from the construction in [3], where
the Lie quotient considered has always trivial center and, thus, does not restrict
to the Poisson dual in the (n = 2)-case. The universal property of ∧n−1g∗/kn, or
more trivially a straightforward remark from definitions, allows to prove that the
Daletskij-Takhtajan Lie algebra is a quotient of the Nambu-Lie dual.

Remark. The bracket defined in (3.8) can be extended to the space of (n−1)-
forms on the group G by letting:

[[fαl, βl]] = f [[α, β]] + ]Pα
l(f)βl

[[αl, fβl]] = f [[α, β]]− iP (]Pαl)(df ∧ βl)
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for every f ∈ C∞(G) and for every left invariant (n − 1)-forms αl, βl with values
α, β ∈ ∧n−1g∗ in the identity.

Remark. In terms of the Nambu-Lie dual the infinitesimal characterization of
the Nambu properties of subgroups of G can be given as follows

1. H is a connected Nambu-Lie subgroup of G ⇒ ∧n−1h∗ is a (left) Leibniz
ideal in ∧n−1g∗.

2. H is a connected coisotropic subgroup of G ⇐⇒ ∧n−1h∗ is a Leibniz
subalgebra in ∧n−1g∗.

From this remark it is obvious that if codimh ≤ n − 2 then ∧n−1h⊥ = 0 is a
Leibniz left ideal and so h corresponds to a Nambu-Lie subgroup; furthermore
if codimh = n − 1 then ∧n−1h⊥ is a 1-dimensional subspace and, thus, a Lie
subalgebra, which proves that h integrates to a coisotropic subgroup.

Corollary 3.3. Every subgroup of a maximal rank Nambu-Lie group is co-
isotropic.

Whichever is the rank of P we can also define an action of ∧n−1g∗ on g as
follows

〈φ, ad∗ξX〉 = −〈[ξ, φ], X〉(3.10)

where ξ ∈ ∧n−1g∗ and φ ∈ g∗ (so that the bracket on the right hand side should be
intrepretated as

∑
ci1...in−1 [ξi1 , . . . , ξin−1 , φ]). Remark that this action shouldn’t

be confused with the coadjoint action of a Lie algebra on its dual (and thus on the
wedge products of the dual); we will denote the coadjoint action with coad.

Lemma 3.4. The map ad∗ defines a Leibniz algebra representation of ∧n−1g∗

on g.

Proof. Let ξ, η be in ∧n−1g∗ and prove that for every φ ∈ g∗

0 = 〈φ, ad∗[[ξ,η]]X − ad
∗
ηad
∗
ξX + ad∗ξad

∗
ηX〉(3.11)

The right hand side of (3.11) equals

−〈[[[ξ, η]], φ]− [ξ, [η, φ]] + [η, [ξ, φ]], X〉
which is zero due to the fundamental identity of Filippov algebras (2.3). The last
statement of the lemma is trivial. �

This representation factors through the two sided ideal kn to give a Lie algebra
representation of ∧n−1g∗/kn on g.

Corollary 3.5. The cocycle condition (2.5) is satisfied if and only if

〈φ, ad∗α[X,Y ]− [Y, ad∗αX] + [X, ad∗αY ]〉(3.12)

= 〈[ad∗Y α, φ], X〉 − 〈[ad∗Xα, φ], Y 〉

for every α ∈ ∧n−1g∗, φ ∈ g∗, X,Y ∈ g. Equivalently

ad∗α[X,Y ]− [X, ad∗αY ] + [Y, ad∗αX] = ad∗ad∗Y αX − ad
∗
ad∗Xα

Y .
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Proof. Just rewrite (2.5) for α = α1 ∧ . . . ∧ αn−1 and φ = αn. Then:

〈[α, φ], [X,Y ]〉 = 〈[ad∗Y α, φ] + [α, ad∗Y φ], X〉
− 〈[ad∗Xα, φ] + [α, ad∗Xφ], Y 〉

⇐⇒ 〈φ, ad∗α[X,Y ]〉 = 〈[ad∗Y α, φ], X〉+ 〈ad∗Y φ, ad∗αX〉
− 〈[ad∗Xα, φ], Y 〉 − 〈ad∗Xφ, ad∗αY 〉

⇐⇒ 0 = 〈φ, ad∗α[X,Y ]− [Y, ad∗αX] + [X, ad∗αY ]〉
+ 〈[ad∗Y α, φ], X〉 − 〈[ad∗Xα, φ], Y 〉

This last equality, being verified for every φ ∈ g∗ implies (3.5). �

4. Nambu Actions

Let M be a G-manifold with respect to the action φ : G×M →M . For every g ∈ G
we will denote with φg : M → M the map φg(x) = φ(g, x) and for every x ∈ M
we will denote with φx : G → M the map φx(g) = φ(g, x). The usual notation of
a differentiable map with a low index ∗ will be used both for the derivative and
for any of its wedge products when needed. When (G,P ) is a Nambu-Lie group
and (M,S) is a Nambu manifold the latter will be called a Nambu (G,P )-space if

Sφ(g,x) = φg,∗Sx + φx,∗Pg .

In such case we will say that the Nambu structure S on M is (G,P )-multiplicative
and that the action σ is a Nambu action. Let us remark that the special case P = 0
corresponds to G-invariance of S: Sφ(g,x) = Sx. When the action is homogeneous
we will also say that (M,S) is a (G,P )-Nambu homogeneous space. Lastly, for
any chosen x0 ∈M we will denote with Gx0 its stabilizer subgroup in G.

Definition 4.1. Let (g, δ) be a Filippov-Lie bialgebra. A Lie algebra antiho-
momorphism σ : g → X(M) with values in the Lie algebra of vector fields on a
Nambu manifold (M,S) is called an infinitesimal Nambu action if

Lσ(X)S = σ(δP (X)) .(4.13)

An infinitesimal action of a Nambu-Lie group is an infinitesimal action of its
tangent Filippov-Lie bialgebra.

Remark that in the definition we used the convention of denoting with the same
letter the map σ and its extension to wedge product spaces.

The link between Nambu actions and their infinitesimal counterpart is given by
the following proposition.

Proposition 4.2. Let (G,P ) be a connected Nambu-Lie group and let φ be a G-
action on a rank n Nambu manifold (M,S). Let us denote with σ the corresponding
infinitesimal G-action. The following are equivalent:

1. φ is a Nambu action;
2. σ is an infinitesimal Nambu action;
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3. for every f1, . . . , fn ∈ C∞(M) and every X ∈ g

σ(X){f1, . . . , fn} −
n∑
i=1

{f1, . . . , σ(X)fi, . . . fn} = 〈[df1, . . . , dfn], X〉(4.14)

where the right hand side contains the 1-form bracket defined by the Nambu
tensor S.

4. for every X ∈ g and ω1, . . . , ωn differentiable 1-forms on M :

(Lσ(X)S)(ω1, . . . , ωn) = 〈[ξω1 , . . . , ξωn ], X〉(4.15)

where ξωi are functions from M to g∗ defined by 〈ξωi , X〉 = 〈ωi, σ(X)〉 and
their bracket is the pointwise bracket.

Proof. Let us prove that (2)⇒ (1). Consider the multiplicative property

Sφ(g,x) = φg,∗Sx + φx,∗Pg

and apply φg−1,∗ on both sides. Then

φg−1,∗Sφ(g,x) = Sx + φx,∗lg−1,∗Pg

Let now g = exp(tX), t ∈ R, X ∈ g:

φe−tX ,∗Sφ(etX ,x) = Sx + φx,∗le−tX ,∗PetX(4.16)

Now differentiate (4.16) and evaluate it at t = 0. Then the left hand side equals
LXS(x) and the right hand side equals φx,∗δ(X). Let us now prove the opposite
implication. The idea is, first of all, to prove that (4.16) holds for every t ∈ R.
Clearly the relation holds for t = 0. Furthermore for generic t the derivative of
the left hand side equals

σe−tX ,∗Lσ(X)S(etXx) = σXAde−tX (LXP )(e)

and the derivative of the right hand side equals

σx,∗
d

dt
le−tX ,∗P (etX) = σx,∗Ade−tXLXP (e)

From the fact that such derivatives are equal we can conclude that (4.16) holds
for every x ∈ M , at least for all g in a neighbourhood of the identity. Being G
connected every neighbourhood of the identity generates G. This fact, together
with P being multiplicative, is enough to prove the claim.

To prove that (2) implies (4) we simply have to apply to both sides of 4.13 to
the n-form ω1 ∧ . . . ∧ ωn. �

We remark that when n ≥ 3 this proposition still does not allow to conclude
that every infinitesimal action of a Filippov-Lie bialgebra is integrable to a Nambu
action of a Nambu-Lie group, due to the existence of non integrable Filippov-Lie
bialgebras (see [13] for an explicit example).

Proposition 4.3. Let σ : g → X(M) be an infinitesimal Nambu action of a
Filippov-Lie bialgebra (g, δP ) on the Nambu manifold (M,S). If h is a coisotropic
subalgebra of g the algebra of invariant functions on M is closed under Nambu
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brackets. If h\M is a manifold there exists a unique Nambu tensor on the quotient
manifold such that the projection M → h\M is a Nambu map.

Proof. Let φ1, . . . , φn ∈ C∞(M) and let X ∈ g. Then:

σ(X){φ1, . . . , φn} =
n∑
i=1

{φ1, . . . , σ(X)φi, . . . , φn}+ 〈[ξφ1 , . . . , ξφn ], X〉

where ξφi : M → g∗ verifies 〈ξφi , Y 〉 = σ(Y )φi. If every function φi is h-invariant
the first n summands are zero. Considering that the maps ξφi take values in h0

and that such space is a Filippov subalgebra of g∗ the last summand is zero as
well. The other claims of the proposition then follow immediatly. �

Let now α ∈ ∧(n−1)g∗ and denote with αl and αr respectively the left and right
invariant differential (n− 1)-form on G. Define the following two maps:

λ : ∧n−1 g∗ → X(G); α 7→ ]P (αl)(4.17)

ρ : ∧n−1 g∗ → X(G); α 7→ −]P (αr)(4.18)

Remark that λ is a Leibniz algebra antihomomorphism and ρ is a Leibniz algebra
homomorphism. This follows from the fact that ]P induces a Leibniz morphism
from the algebra of (n−1) forms to the Lie algebra of vector fields on G, as proven
in [8], Proposition 3.3.

Let now ξ ∈ ∧n−1g∗ be such that [[ξ, ξ]] = 0. Then ξ ∈ Ker]P so that λ(ξ) =
ρ(ξ) = 0. We conclude that kn ⊆ Kerλ, ρ and that λ and ρ induce a well defined
Lie algebra (anti)homomorphism from ∧n−1g∗/kn to X(G). We will denote such
maps respectively with λn and ρn.

Definition 4.4. The maps λn and ρn are called infinitesimal dressing actions.
If they can be integrated to actions of G∗ on G then the corresponding integrated
action will be called dressing action of G∗ on G. The Nambu-Lie group G is called
complete if every dressing field is complete.

As one can straightforwardly remark from definitions the infinitesimal dressing
actions are tangent to the volume leaves. In fact, a simple proof allows to show
that up to connected components the canonical foliation on G is given by the
orbits of such infinitesimal action.

Proposition 4.5. For every α ∈ ∧n−1g∗/kn and for every g, h ∈ G we have
the twisted multiplicative property

λn(α)(gh) = lg,∗λn(α)(h) + rh,∗λn(Adh−1α)(g)(4.19)

ρn(α)(gh) = lg,∗ρn(Adgα)(h) + rh,∗ρn(α)(g)

Furthermore the linearization of the dressing action is the action ad∗ of ∧n−1g∗ on
g defined in 3.11. These properties uniquely characterize the infinitesimal dressing
action.
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Proof. We will give the proof only for the infinitesimal left dressing action λn.
The identity (4.19) is proven by direct computation:

λn(α)(gh) = (αlyP )(gh) = αl(gh)yP (gh)

= αl(gh)y (lg,∗P (h) + rh,∗P (g))

= lg,∗(αl(h)yP (h)) + αl(gh)y rh,∗P (g)

= lg,∗λn(α)(h) + rh,∗Adh−1αl(g)y rh,∗P (g)

To prove the second claim remark that being λn(α)(e) = 0 we can linearize it to
map from g to g given by X 7→ [X̄, λn(α)]e, where X̄ is any vector field over G
such that X̄(e) = X. Let’s choose X̄ right invariant. Then for any β ∈ g∗

〈[X̄, λn(α)e], β〉 =
d

dt
〈le−tX ,∗λn(α)(etX), β〉

∣∣∣
t=0

=
d

dt
〈λn(α)(etX), letX ,∗β〉

∣∣∣
t=0

=
d

dt

[
α ∧ letX ,∗βyP l

] ∣∣∣
t=0

= 〈X, [α, β]〉 = 〈ad∗αX,β〉

Lastly let L : ∧n−1 g∗/kn → X(M) be a map verifying (4.19) and the linearization
condition. Then L − λn still verifies (4.19). If α ∈ g∗ and β ∈ ∧n−1g∗ and with
the l superscript we denote the corresponding left invariant forms we can define
the n-vector field P0 on G by

P0(αl, βl) = 〈αl, (L− λ)(β)〉
Being L− λ twisted multiplicative then P0 is a multiplicative n-vector field on G;
its linearization at the identity is 0 so that P0 = 0 and the claim follows. �

5. Homogeneous Nambu Spaces

Proposition 5.1. Let (M,S) be a (G,P )-Nambu homogeneous space. Then
(M,S) is non regular if and only if there exists a coisotropic subgroup H of G
such that M ' G/H and S is the reduction of P on M .

Lemma 5.2. For every x0 ∈M there exists a bijective correspondence among:
1. (G,P )-multiplicative n-vectors S on M ;
2. elements ρ ∈ ∧nTx0M such that

ρ = φh,∗ρ+ φx0,∗Ph ∀h ∈ Gx0(5.20)

Proof. Let S be a multiplicative n-vector. Apply such condition to S(x0) for
any h ∈ Gx0 to obtain exactly (5.20).

On the other hand let ρ be an n-vector for which (5.20) holds and let

S(x) := φg,∗ρ+ φx0,∗Pg

where g ∈ G is such that x = gx0. Then S is a well defined multiplicative n-vector
field on M . �
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Deriving condition (5.20) in the group identity e one obtains the following in-
finitesimal carachterization.

Lemma 5.3. Let Gx0 be connected. There exists a bijective correspondence
between

1. (G,P )-multiplicative n-vector fields S on M ;
2. tangent n-vectors ρ ∈ ∧nTx0M such that

φx0,∗(δP (X)) + LXρ = 0 ∀X ∈ gx0(5.21)

where gx0 stands for the Lie algebra of Gx0 .

Proof. Let now ρ̃ ∈ ∧ng be any lift of ρ. Condition (5.21) can be rewritten as

δP (X) + ad
(n)
X ρ̃ ∈ g ∧ . . . ∧ g ∧ gx0 ∀X ∈ gx0(5.22)

Then (5.22) admits ρ = 0 as a solution if and only if Gx0 is a coisotropic subgroup
of the given Nambu-Lie group (see proposition 2.5).

We have then proved that in M there exists at least one point in which the
homogeneous Nambu structure is zero in and only if there exists a cosiotropic
subgroup H such that M is the Nambu quotient G/H; such are all non regular
Nambu spaces. �

The multiplicative condtion can be dualized and expressed as follows:

[α1, . . . , αn] +
n∑
i=1

(−1)iad∗〈Rαî〉(αi) ∈ g0 ∀α1, . . . , αn ∈ h0

where αî = α1 ∧ . . . ∧ αi−1 ∧ αi+1 . . . ∧ αn. The condition that guarantees that
p∗(P +R) is Nambu is not as easy as in the Poisson case.
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